VLIYaNIE MAGNITNOGO POLYa NA PROVODIMOST' TUNNEL'NOY STRUKTURY SVERKhPROVODNIK-IZOLYaTOR-NORMAL'NYY METALL

PII
S0044451024090098-1
DOI
10.31857/S0044451024090098
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 3
Pages
391-402
Abstract
Проанализированы результаты экспериментов по влиянию магнитного поля на проводимость туннельных структур сверхпроводник–изолятор–нормальный металл при температурах, много меньших критической температуры сверхпроводника Tc, и при малых напряжениях, при которых одноэлектронный ток Isingle сравним или меньше подщелевого андреевского тока IAndreev = In + Is. Эти две компоненты андреевского тока связаны с диффузионным движением коррелированных пар электронных возбуждений в нормальном и соответственно сверхпроводящем слоях структуры. При ориентации поля перпендикулярной к структуре с латеральными размерами больше глубины прникновения прослежен переход от неоднородного распределения поля к вихревой структуре. При ориентациях поля как в плоскости структуры, так и перпендикулярно к ней, одноэлектронный ток растет из-за влияния поля на сверхпроводящую щель Δc. Проводимость, обязанная андреевскому току In = kn th(eV/2kTeff), уменьшается из-за роста эффективной температуры Teff. Уменьшение вклада Is связано с уменьшением щели. Нам не известны работы, в которых рассматривается влияние магнитного поля на эту составляющую туннельного тока. Показано, что при малых напряжениях так называемый ток Дайнса, обязанный мнимой добавке к энергии щели из-за влияния дефектов в сверхпроводнике, не дает вклада в проводимость туннельной структуры.
Keywords
Date of publication
26.07.2025
Number of purchasers
0
Views
41

References

  1. 1. J. L. Levine, Phys. Rev. 155, 373 (1967).
  2. 2. J. Millstein, M. Tinkham, Phys. Rev. 158, 325 (1967).
  3. 3. A. Anthore, H. Pothier, and D. Esteve, Phys. Rev. Lett. 90, 127001 (2003).
  4. 4. М. А. Тарасов, В. С. Эдельман, Письма в ЖЭТФ, 101, 136 (2015).
  5. 5. M. Tarasov, A. Gunbina, M. Fominsky, A. Chekushkin, V. Vdovin, V. Koshelets, E. Sohina, A. Kalaboukhov, and V. Edelman, Electronics 10, 2894 (2021); https://doi.org/10.3390/electronics10232894.
  6. 6. T. Greibe, M. P.V. Stenberg, C. M. Wilson, T. Bauch, V. S. Shumeiko, and P. Delsing, Phys. Rev. Lett. 106, 097001 (2011).
  7. 7. А. В. Селиверстов, М. А. Тарасов, В. С. Эдельман, ЖЭТФ 151, 752 (2017).
  8. 8. I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).
  9. 9. F. W. J. Hekking and Y. V. Nazarov, Phys. Rev. B 49, 6847 (1994).
  10. 10. T. Faivre, D. S. Golubev, J. P. Pekola, Appl. Phys. Lett. 106, 182602 (2015).
  11. 11. R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).
  12. 12. A. V. Feshchenko, L. Casparis, I. M. Khaymovich, D. Maradan, O.-P. Saira, M. Palma, M. Meschke, J. P. Pekola, and D. M. ZumbUhl, Phys. Rev. Appl. 4, 034001 (2015)
  13. 13. В. С. Эдельман, ПТЭ, No 2, 159 (2009).
  14. 14. C. Kittel, Introduction to Solid State Physics, 4 edition, John Willey and Sons, Inc [ Ч. Кит-тель, Введение в физику твердого тела, Наука, Москва (1978)].
  15. 15. В.В. Шмидт, Введение в физику сверхпроводников, МЦМНО (2000).
  16. 16. M. R. Eskildsen, M. Kugler, G. Levy, S. Tanaka, J.Jun, S. M. Kazakov, J. Karpinski, and O. Fischer, Physica C: Superconductivity 385, 169 (2003).
  17. 17. I. V. Grigorieva, W. Escoffier, J. Richardson, L. Y. Vinnikov, S. Dubonos, and V. Oboznov, Phys. Rev. Lett. 96, 077005 (2006).
  18. 18. A. F. Volkov and T. M. Klapwijk, Phys. Lett. A 168, 217 (1992); A. F. Volkov, Phys. Lett. A 174, 144 (1993); A.F. Volkov, A.V. Zaitsev, and T. M. Klapwijk, Physica C 210, 21 (1993); A. F. Volkov, Physica B 203, 267 (1994).
  19. 19. D. A. Dikin, M. J. Black, and V. Chandrasekhar, Phys. Rev. Lett. 87, 187003 (2001); https://doi.org/10.1103/PhysRevLett.87.187003.
QR
Translate