RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

CAVITY QED WITH DEGENERATE ATOMIC LEVELS AND POLARIZATION-DEGENERATE FIELD MODE

PII
S3034641X25090062-1
DOI
10.7868/S3034641X25090062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 168 / Issue number 3(9)
Pages
331-342
Abstract
The Jaynes – Cummings model with degenerate atomic levels and polarization-degenerate field mode is considered. The general expression for the system evolution operator is derived. The analytical expressions for such operators in the case of low values (J ≤3/2) of atomic angular momentum are obtained. The polarization properties of the photon emitted into the cavity by an excited atom are studied with an account of relaxation processes for arbitrary angular momenta of atomic levels.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).
  2. 2. J. Larson, and T. Mavrogordatos, The Jaynes – Cummings Model and Its Descendants, IOP Publishing, Bristol (2021).
  3. 3. M. Scully and M. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).
  4. 4. S. Haroche and J.-M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons, Oxford University Press, Oxford (2006).
  5. 5. P. Meystre, Quantum Optics. Taming the Quantum, Springer, Cham (2021).
  6. 6. J.-M. Raimond, M. Brune, and S. Haroche, Rev.Mod.Phys. 73, 565 (2001).
  7. 7. H. Walther, B. Varcoe, B.-G. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).
  8. 8. A. Kuhn, and D. Ljunggren, Contemp.Phys. 51, 289 (2010).
  9. 9. A. Reiserer, and G. Rempe, Rev.Mod.Phys. 87, 1379 (2015).
  10. 10. D. Meshede, H. Walther, and G. Muller, Phys. Rev. Lett. 54, 51 (1985).
  11. 11. B.-G. Englert, M. Löffler, O. Benson, M. Weidinger, B. Varcoe, and H. Walther, Fortschrit. Phys. 46, 897 (1998).
  12. 12. B. Varcoe, S. Brattke, and H. Walther, J.Opt.B:Quantum Semiclassical Opt. 2, 154 (2000).
  13. 13. S. Brattke, B. Varcoe, and H. Walther, Phys. Rev. Lett. 86, 3534 (2001).
  14. 14. M. Jones, G. Wilkes, and B. Varcoe, J. Phys. B 42, 145501 (2009).
  15. 15. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 85, 4872 (2000).
  16. 16. A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).
  17. 17. T. Wilk, S. Webster, H. Specht, G. Rempe, and A. Kuhn, Phys. Rev. Lett. 98, 063601 (2007).
  18. 18. T. Wilk, S. Webster, A. Kuhn, and G. Rempe, Science 317, 488 (2007).
  19. 19. H. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S.Ritter, and G. Rempe, Nature 473, 190 (2011).
  20. 20. S. Ritter, C. Noölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke1, E. Figueroa, J. Bochmann, and G. Rempe, Nature, 484, 195 (2012).
  21. 21. T. Barrett, O. Barter, D. Stuart, B. Yuen, and A. Kuhn, Phys. Rev. Lett. 122, 083602 (2019).
  22. 22. G. Chiarella, T. Frank, P. Farrera, and G. Rempe, Optica Quantum 2, 346 (2024).
  23. 23. V. Reshetov and I. Yevseyev, Laser Phys. 10, 916 (2000).
  24. 24. V. Reshetov and I. Yevseyev, Laser Phys. Lett. 1, 124 (2004).
  25. 25. V. Reshetov, E. Popov, and I. Yevseyev, Laser Phys.Lett. 7, 218 (2010).
  26. 26. V. Reshetov, Opt. Commun. 285, 4457 (2012).
  27. 27. V. Reshetov and E. Popov, J. Phys. B 45, 225502 (2012).
  28. 28. V. Reshetov, Laser Phys. Lett. 16, 046001 (2019).
  29. 29. V. Reshetov, Laser Phys. Lett. 17, 026001 (2020).
  30. 30. V. Reshetov, Laser Phys. 30, 086001 (2020).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library