- Код статьи
- S0044451025040078-1
- DOI
- 10.31857/S0044451025040078
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 167 / Номер выпуска 4
- Страницы
- 528-543
- Аннотация
- Журнал экспериментальной и теоретической физики, ON THE THEORY OF CARBONITRIDE NUCLEATION KINETICS IN MICROALLOYED AUSTENITE
- Ключевые слова
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 17
Библиография
- 1. I. Tamura, H. Sekine, and T. Tanaka, Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth-Heinemann, Oxford, Boston (2013).
- 2. T. Gladman, The Physical Metallurgy of Microalloyed Steels, Maney for the Institute of Materials, London (1997).
- 3. T. Gladman, Grain Size Control, Maney Publishing, London (2020).
- 4. A. Le Bon, J. Rofes-Vernis, and C. Rossard, Recrystallization and Precipitation During Hot Working of a Nb-Bearing HSLA Steel, Metal Science 9, 36 (1975).
- 5. R. Simoneau, G. Bégin, and A. H. Marquis, Progress of Nbcn Precipitation in HSLA Steels as Determined by Electrical Resistivity Measurements, Metal Science 12, 381 (1978).
- 6. J. G. Jung, J. S. Park, J. Kim, and Y. K. Lee, Carbide Precipitation Kinetics in Austenite of a Nb–Ti–V Microalloyed Steel, Materials Science and Engineering 528, 5529 (2011).
- 7. B. Dutta, and C. M. Sellars, Effect of Composition and Process Variables on Nb(C,N) Precipitation in Niobium Microalloyed Austenite, Materials Science and Technology 3, 197 (1987).
- 8. B. Dutta, E. Valdes, and C. M. Sellars, Mechanism and Kinetics of Strain Induced Precipitation of Nb(C,N) In Austenite, Acta Metallurgica et Materialia 40, 653 (1992).
- 9. W. J. Liu and J. J. Jonas, Nucleation Kinetics of Ti Carbonitride in Microalloyed Austenite, Metallurgical Transactions A 20, 689 (1989).
- 10. P. Maugis and M. Gouné, Kinetics of Vanadium Carbonitride Precipitation in Steel: A Computer Model, Acta Materialia, 53, 3359 (2005).
- 11. H. Zou and J. S. Kirkaldy, Carbonitride Precipitate Growth in Titanium/Niobium Microalloyed Steels, Metallurgical Transactions A 22, 1511 (1991).
- 12. M. Hillert and L. I. Staffansson, Regular-Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand. 24, 3618 (1970).
- 13. H. Reiss, The Kinetics of Phase Transitions in Binary Systems, J. Chem. Phys. 18, 840 (1950).
- 14. G. L. Dunlop and P. J. Turner, Atom-Probe Field-Ion Microscopy of Mixed Vanadium–Titanium Carbides in a Low-Alloy Steel, Metal Science 9, 370 (1975).
- 15. J. S. Langer, Statistical Theory of the Decay of Metastable States, Ann. Phys. 54, 258 (1969).
- 16. M. Temkin, Mixtures of Fused Salts as Ionic Solutions, Acta Phys. Chem. USSR 20, 411 (1945).
- 17. T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, and T. Maki, Multiphase Crystallography in the Nucleation of Intragranular Ferrite on MnS+V(C,N) Complex Precipitate in Austenite, ISIJ International 43, 2028 (2003).
- 18. Y. Yazawa, T. Furuhara, and T. Maki, Effect of Matrix Recrystallization on Morphology, Crystallography and Coarsening Behavior of Vanadium Carbide in Austenite, Acta Materialia 52, 3727 (2004).
- 19. D. Poddar, P. Cizek, H. Beladi, and P. D. Hodgson, Evolution of Strain-Induced Precipitates in a Model Austenitic Fe–30Ni–Nb Steel and their Effect on the Flow Behaviour, Acta Materialia 80, 1 (2014).
- 20. T. N. Baker, Microalloyed Steels, in: Future Developments of Metals and Ceramics, ed. by J. A. Charles, G. W. Greenwood, and G. C. Smith, London, Institute of Materials, p. 75 (1992).
- 21. T. N. Baker, Microalloyed Steels, Ironmaking and Steelmaking 43, 264 (2016).
- 22. R. E. Smallman, and A. H. W. Ngan, Physical Metallurgy and Advanced Materials, 7th ed., Elsevier (2007).
- 23. J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, Chapter 52 (1975).
- 24. C. C. Dollins, Nucleation on Dislocations, Acta Metallurgica 18, 1209 (1970).
- 25. D. M. Barnett, On Nucleation of Coherent Precipitates near Edge Dislocations, Scripta Metallurgica 5, 261 (1971).
- 26. P. Grieveson, An Investigation of the Ti-CN System, Proc. Br. Ceram. Soc. 8, 137 (1967).
- 27. W. Roberts and A. Sandberg, Swedish Institute for Metals Research Report No. IM-1489, Stockholm (1980).
- 28. J. G. Speer, J. R. Michael, and S. S. Hansen, Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels, Metallurgical and Materials Transactions A 18, 211 (1987).
- 29. J. G. Speer, S. Mehta, and S. S. Hansen, Composition of Vanadium Carbonitride Precipitates in Microalloyed Austenite, Scr. Metall. 18, 1241 (1984).
- 30. M. Volmer and A. Weber, Keimbildung in übersättigten Gebilden, Z. Phys. Chem. 119, 277 (1926).
- 31. R. Becker and W. Doering, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. 24, 719 (1935).
- 32. Ja. B. Zeldovich, On the Theory of New Phase Formation: Cavitation, Acta Physicochim. URSS 18, 1 (1943).
- 33. D. Stauffer, Kinetic Theory of Two-Component (Hetero-Molecular) Nucleation and Condensation, J. Aerosol Sci. 7, 319 (1976).
- 34. L. M. Berezhkovskii and V. Yu. Zitserman, Direction of the Nucleation Current through the Saddle Point in the Binary Nucleation Theory and the Saddle Point Avoidance, J. Chem. Phys. 102, 3331 (1995).
- 35. J. Frenkel, Kinetic Theory of Liquids, Dover Publication, New York (1955).
- 36. J. Lothe and G. M. Pound, Reconsiderations of Nucleation Theory, J. Chem. Phys. 36, 2080 (1962).
- 37. D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth Heinemann, Oxford, Boston (2000).
- 38. H. Reiss and J. L. Katz, Resolution of the Translation — Rotation Paradox in the Theory of Irreversible Condensation, J. Chem. Phys. 46, 2496 (1967).
- 39. J. L. Katz and H. Wiedersich, Nucleation of Voids in Materials Supersaturated with Vacancies and Interstitials, J. Chem. Phys. 55, 1414 (1971).
- 40. J. L. Katz, Homogeneous Nucleation Theory and Experiment: A Survey, Pure. Appl. Chem 64, 1661 (1992).
- 41. M. S. Veshchunov, On the Theory of Void Nucleation in Irradiated Crystals, J. Nucl. Mater. 571, 154021 (2022).
- 42. H. Reiss, W. K. Kegel, and J. L. Katz, Resolution of the Problems of Replacement Free Energy, 1/s, and Internal Consistency in Nucleation Theory by Consideration of the Length Scale for Mixing Entropy, Phys. Rev. Lett. 78, 4506 (1997).
- 43. M. S. Veshchunov, Development of the Reiss Theory for Binary Homogeneous Nucleation of Aerosols, Aerosol Sci. Technol. 58, 1 (2023).
- 44. A. W. Adamson, Textbook of Physical Chemistry, Academic Press (1973).
- 45. S. Okaguchi and T. Hashimoto, Computer Model for Prediction of Carbonitride Precipitation during Hot Working in Nb-Ti Bearing HSLA Steels, ISIJ International 32, 283 (1992).
- 46. L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 5: Statistical Physics, Pergamon Press, Chapter 87 (1980).
- 47. M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C. H. De Novion, Experimental Study and Modelling of Copper Precipitation under Electron Irradiation in Dilute FeCu Binary Alloys, J. Nucl. Mater. 245, 224 (1997).
- 48. N. Korepanova, L. Gu, M. Dima, and H. Xu, Cluster Dynamics Modeling of Niobium and Titanium Carbide Precipitates in _-Fe And -Fe, Chinese Physics B 31, 026103 (2022).