- Код статьи
- S0044451025030125-1
- DOI
- 10.31857/S0044451025030125
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 167 / Номер выпуска 3
- Страницы
- 412-429
- Аннотация
- В рамках модели зарядовых триплетов, предложенной для описания зарядового диспропорционирования в ян-теллеровских магнетиках рассмотрена роль двухчастичного переноса заряда в формировании спин-зарядовой структуры на примере ортоникелатов RNiO3 и ортоманганитов RMnO3 (R — редкая земля или иттрий). Показано, что в общем случае спиновая зависимость гамильтониана двухчастичного переноса, или «бозонного» двойного обмена не может быть сведена к эффективному спин-гамильтониану Гейзенберга, а спин-зарядовая структура ян-теллеровских магнетиков определяется в результате минимизации энергии двойного обмена, сверхобмена и энергии спин-независимых нелокальных корреляций. Необычная магнитная структура ортоникелатов, определяемая «странным» вектором распространения k=(1/2,0,1/2) с сосуществованием ферро- и антиферромагнитных связей, является следствием конкуренции двухчастичного переноса, стабилизирующего ферромагнитную F-фазу, и сверхобменного взаимодействия Ni2+-O2−-Ni2+, стабилизирующую антиферромагнитную фазу G-типа. Анализ спиновой структуры электронно-дырочных центров в RMnO3 указывает на ферромагнитный металлический характер диспропорционированной фазы в LaMnO3 и тенденцию к формированию спиральных структур в зарядово-диспропорционированной фазе более «тяжелых» манганитов.
- Ключевые слова
- Дата публикации
- 26.07.2025
- Всего подписок
- 0
- Всего просмотров
- 50
Библиография
- 1. К. И. Кугель, Д. И. Хомский, Эффект Яна – Теллера и магнетизм: соединения переходных металлов, УФН 136, 621 (1982)
- 2. K. I. Kugel, D. I. Khomskii, The Jahn – Teller Effect and Magnetism: Transition Metal Compounds, Physics-Uspekhi 25, 231 (1982), doi:10.1070/PU1982v025n04ABEH004537.
- 3. D. Khomskii, Transition Metal Compounds, Cambridge Univ. Press (2014).
- 4. A. S. Moskvin, Perspectives of Disproportionation Driven Superconductivity in Strongly Correlated 3d Compounds, J. Phys.: Condens. Matter 25, 085601 (2013), doi:10.1088/0953-8984/25/8/085601.
- 5. A. Moskvin, Jahn – Teller Magnets, Magnetochemistry 9, 224 (2023), doi:10.3390/magnetochemistry9110224.
- 6. H. Sun, M. Huo, X. Hu et al., Signatures of Superconductivity Near 80K in a Nickelate Under High Pressure, Nature 621, 493 (2023), doi:10.1038/s41586-023-06408-7.
- 7. Jun Hou, Peng-Tao Yang, Zi-Yi Liu et al., Emergence of High-Temperature Superconducting Phase in La3Ni2O7 Crystals, Chin. Phys. Lett. 40, 117302 (2023), doi:10.1088/0256-307X/40/11/117302.
- 8. Y. Zhang, D. Su, Y. Huang et al., High-Temperature Superconductivity with Zero Resistance and Strange-Metal Behaviour in La3Ni2O7−Δ, Nat. Phys. 20, 1269 (2024), doi:10.1038/s41567-024-02515-y.
- 9. H. Katayama-Yoshida, K. Kusakabe, H. Kizaki, and A. Nakanishi, General Rule and Materials Design of Negative Effective U System for High-Tc Superconductivity, Appl. Phys. Express 1, 081703 (2008), doi:10.1143/APEX.1.081703.
- 10. A. S. Moskvin, Pseudo-Jahn –Teller Centers and Phase Separation in the Strongly Correlated Oxides With Nonisovalent Substitution: Cuprates and Manganites, Physica B 252, 186 (1998).
- 11. A. S. Moskvin, Charge States of Strongly Correlated 3d Oxides: From Typical Insulator to Unconventional Electron-Hole Bose Liquid, Low Temp. Phys. 33, 234 (2007).
- 12. I. I. Mazin, D. I. Khomskii, R. Lengsdor et al., Charge Ordering as Alternative to Jahn –Teller Distortion, Phys. Rev. Lett. 98, 176406 (2007), doi:10.1103/PhysRevLett.98.176406.
- 13. A. S. Moskvin, Disproportionation and Electronic Phase Separation in Parent Manganite LaMnO3, Phys. Rev. B 79, 115102 (2009), doi:10.1103/PhysRevB.79.115102.
- 14. A. S. Moskvin, True Charge Transfer Gap in Parent Insulating Cuprates, Phys. Rev. B 84, 075116 (2011).
- 15. R. J. Green, M. W. Haverkort, and G. A. Sawatzky, Bond Disproportionation and Dynamical Charge Fluctuations in the Perovskite Rare-Earth Nickelates, Phys. Rev. B 94, 195127 (2016).
- 16. А. С. Москвин, Приближают ли нас методы DFT, L(S)DA, LDA+U, LDA+DMFT... к правильному описанию оптического отклика для сильнокоррелированных систем? Опт. и спектр. 121, 515 (2016)
- 17. S. Moskvin, DFT, L(S)DA, LDA+U, LDA+DMFT, Whether We Do Approach to a Proper Description of Optical Response for Strongly Correlated Systems? Opt. and Spectrosc. 121, 467 (2016), doi:10.1134/S0030400X16100167.
- 18. O. I. Malyi and A. Zunger, False Metals, Real Insulators, and Degenerate Gapped Metals, Appl. Phys. Rev. 7, 041310 (2020), doi:10.1063/5.0015322.
- 19. M. Takano, N. Nakanishi, Y. Takeda, S. Naka, and T. Takada, Charge Disproportionation in CaFeO3 Studied With the M¨ossbauer Effect, Materials Res. Bull. 12, 923 (1977), doi:10.1016/00255408(77)90104-0.
- 20. A. Subedi, O. E. Peil, and A. Georges, Low-Energy Description of the Metal-Insulator Transition in the Rare-Earth Nickelates, Phys. Rev. B 91, 075128 (2015).
- 21. E. Dagotto, T. Hotta, and A. Moreo, Colossal Magnetoresistant Materials: The Key Role of Phase Separation, Phys. Rep. 344, 1 (2001), doi:10.1016/S0370-1573(00)00121-6.
- 22. T. M. Rice and L. Sneddon, Real-Space and K-Space Electron Pairing in BaPb1−xBixO3, Phys. Rev. Lett. 47, 689 (1981).
- 23. A. Moskvin and Y. Panov, Effective-Field Theory for Model High-Tc Cuprates, Condens. Matter 6, 24 (2021), doi:10.3390/condmat6030024.
- 24. A. S. Moskvin and Yu. D. Panov, Model of Charge Triplets for High-Tc Cuprates, J. Magn. Magn. Mater. 550, 169004 (2022), doi:10.1016/j.jmmm.2021.169004.
- 25. C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. 82, 403 (1951).
- 26. P. W. Anderson and H. Hasegawa, Considerations on Double Exchange, Phys. Rev. 100, 675 (1955), doi:10.1103/physrev.100.675.
- 27. P. G. de Gennes, Effects of Double Exchange in Magnetic Crystals, Phys. Rev. 118, 141 (1960).
- 28. E. M¨uller-Hartmann and E. Dagotto, Electronic Hamiltonian for Transition-Metal Oxide Compounds, Phys. Rev. B 54, R6819 (1996).
- 29. A. Moskvin, Structure-Property Relationships for Weak Ferromagnetic Perovskites, Magnetochemistry 7, 111 (2021), doi:10.3390/magnetochemistry7080111.
- 30. А. С. Москвин, Взаимодействие Дзялошинского и обменно-релятивистские эффекты в ортоферритах, ЖЭТФ 159, 607 (2021)
- 31. S. Moskvin, Dzyaloshinskii Interaction and Exchange-Relativistic Effects in Orthoferrites, JETP 132, 517 (2021), doi:10.1134/S1063776121040245.
- 32. M. L. Medarde, Structural, Magnetic and Electronic Properties of RNiO3 Perovskites (R = Rare Earth), J. Phys.: Condens. Matter 9, 1679 (1997).
- 33. Y. M. Klein, M. Kozlowski, A. Linden et al., ReNiO3 Single Crystals (Re = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) Grown From Molten Salts Under 2000 Bar of Oxygen Gas Pressure, Crystal Growth Des. 21, 4230 (2021), doi:10.1021/acs.cgd.1c00474.
- 34. M. Hepting, The Rare-Earth Nickelates, in Ordering Phenomena in Rare-Earth Nickelate Heterostructures, Springer Theses, Springer, Cham (2017), doi:10.1007/978-3-319-60531-9-2.
- 35. G. Giovannetti, S. Kumar, D. Khomskii, S. Picozzi, and J. van den Brink, Multiferroicity in Rare-Earth Nickelates RNiO3, Phys. Rev. Lett. 103, 156401 (2009).
- 36. D. Kumar, K. P. Rajeev, J. A. Alonso, and M. J. Martinez-Lope, Spin-Canted Magnetism and Decoupling of Charge and Spin Ordering in NdNiO3, Phys. Rev. B 88, 014410 (2013).
- 37. M. Hepting, R. J. Green, Z. Zhong et al., Complex Magnetic Order in Nickelate Slabs, Nat. Phys. 14, 1097 (2018), doi:10.1038/s41567-018-0218-5.
- 38. J. Li, R. J. Green, C. Dominguez et al., Signatures of Polarized Chiral Spin Disproportionation in Rare Earth Nickelates, Nat. Commun. 15, 7427 (2024), doi:10.1038/s41467-024-51576-3.
- 39. N. Ortiz Hernandez, E. Skoropata, H. Ueda et al., Magnetoelectric Effect in Multiferroic Nickelate Perovskite YNiO3, Commun. Mater. 5, 154 (2024), doi:10.1038/s43246-024-00604-2.
- 40. E. Bousquet and A. Cano, Non-Collinear Magnetism and Multiferroicity: The Perovskite Case, Phys. Sci. Rev. 8, 479 (2023), doi:10.1515/psr-2019-0071.
- 41. J. L. Garcia-Mu˜noz, J. Rodriguez-Carvajal, and P. Lacorre, Neutron-Diffraction Study of the Magnetic-Ordering in the Insulating Regime of the Perovskites RNiO3 (R=Pr and Nd), Phys. Rev. B 50, 978 (1994), doi:10.1103/PhysRevB.50.978.
- 42. J. Rodriguez-Carvajal, S. Rosenkranz, M. Medarde et al., Neutron-Diffraction Study of the Magnetic and Orbital Ordering in 154SmNiO3 and 153EuNiO3, Phys. Rev. B 57, 456 (1998).
- 43. M. T. Fernandez-Diaz, J. A. Alonso, M. J. Martinez-Lope et al., Magnetic Structure of the HoNiO3 Perovskite, Phys. Rev. B 64, 144417 (2001), doi:10.1103/PhysRevB.64.144417.
- 44. Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский, Квантовая теория углового момента, Издво Наука, Ленинград (1975)
- 45. D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore (1988).
- 46. Q. Huang, A. Santoro, J. W. Lynn et al., Structure and Magnetic Order in Undoped Lanthanum Manganite, Phys. Rev. B 55, 14987 (1997), doi:10.1103/PhysRevB.55.14987.
- 47. J.-S. Zhou and J. B. Goodenough, Paramagnetic Phase in Single-Crystal LaMnO3, Phys. Rev. B 60, R15002 (1999), doi:10.1103/PhysRevB.60.R15002.
- 48. R. Raffaelle, H. U. Anderson, D. M. Sparlin, and P. E. Parris, Transport Anomalies in the High-Temperature Hopping Conductivity and Thermopower of Sr-Doped La(Cr,Mn)O3, Phys. Rev. B 43, 7991 (1991), doi:10.1103/PhysRevB.43.7991.
- 49. J. A. M. Van Roosmalen and E. H. P. Cordfunke, The Defect Chemistry of LaMnO3+δ: 4. Defect Model for LaMnO3+δ, J. Sol. St. Chem. 110, 109 (1994), doi:10.1006/JSSC.1994.1143.
- 50. Y. Murakami, J. P. Hill, D. Gibbs et al., Resonant XRay Scattering From Orbital Ordering in LaMnO3, Phys. Rev. Lett. 81, 582 (1998).
- 51. M. v. Zimmermann, C. S. Nelson, Y.-J. Kim et al., Resonant X-Ray-Scattering Study of Octahedral Tilt Ordering in LaMnO3 and Pr1−xCaxMnO3, Phys. Rev. B 64, 064411 (2001).
- 52. Kim Yong-Jihn, P-Wave Pairing and Colossal Magnetoresistance in Manganese Oxides, Mod. Phys. Lett. B 12, 507 (1998), doi:10.1142/S0217984998000615.
- 53. V. N. Krivoruchko, Local Spin-Triplet Superconductivity in Half-Metallic Manganites: A Perspective Platform for High-Temperature Topological Superconductivity, Low Temp. Phys. 47, 901 (2021), doi:10.1063/10.0006560.
- 54. V. Markovich, I. Fita, A. Wisniewski et al., Metastable Diamagnetic Response of 20 nm La1−xMnO3 Particles, Phys. Rev. B 77, 014423 (2008), doi:10.1103/PhysRevB.77.014423.
- 55. M. Kasai, T. Ohno, Y. Kauke et al., CurrentVoltage Characteristics of YBa2Cu3Oy/La0.7Ca0.3MnOz/YBa2Cu3Oy Trilayered Type Junctions, Jpn. J. Appl. Phys. 29, L2219 (1990), doi 10.1143/JJAP.29.L2219.
- 56. А. В. Митин, Г. М. Кузьмичева, С. И. Новикова, Сложные оксиды на основе марганца со структурой перовскита и производной от нее, Ж. неорг. химии 42, 1953 (1997)
- 57. V. Mitin, G. M. Kuz’micheva, and S. I. Novikova, Mixed Oxides of Manganese with Perovskite and Perovskite-related Structures, Russian J. Inorg. Chem. 42, 1791 (1997), doi:10.1002/CHIN.199814029.
- 58. R. Nath, A. K. Raychaudhuri, Ya. M. Mukovskii et al., Electric Field Driven Destabilization of the Insulating State in Nominally Pure LaMnO3, J. Phys.: Condens. Matter 25, 155605 (2013), doi:10.1088/0953-8984/25/15/155605.
- 59. R. Cabassi, F. Bolzoni, E. Gilioli et al., Jahn – TellerInduced Crossover of the Paramagnetic Response in the Singly Valent Eg System LaMn7O12, Phys.Rev. B 81, 214412 (2010), doi:10.1103/PhysRevB.81.214412.
- 60. S. Schaile, H.-A. Krug von Nidda, J. Deisenhofer et al., Korringa-Like Relaxation in the High-Temperature Phase of A-Site Ordered YBaMn2O6, Phys. Rev. B 85, 205121 (2012), doi:10.1103/PhysRevB.85.205121.
- 61. T. Hotta and E. Dagotto, Theory of Manganites, in Colossal Magnetoresistive Manganites, ed. By T. Chatterji, Springer, Dordrecht (2004), doi:10.1007/978-94-015-1244-2-5.
- 62. A. М. Кадомцева, А. С. Москвин, И. Г. Бострем, Б. М. Ванклин, Н. А. Хафизова, Природа аномальных магнитных свойств ферритов-хромитов иттрия, ЖЭТФ 72, 2286 (1977)
- 63. M. Kadomtseva, A. S. Moskvin, I. G. Bostrem et al., Nature of the Anomalous Magnetic Properties of Yttrium Ferrite Chromites, Sov. Phys. JETP 45, 1202 (1977).
- 64. I. Fita, V. Markovich, A. S. Moskvin et al., Reversed Exchange-Bias Effect Associated With Magnetization Reversal in the Weak Ferrimagnet LuFe0.5Cr0.5O3, Phys. Rev. B 97, 104416 (2018).
- 65. Е. В. Васинович, А. С. Москвин, Слабые ферримагнетики типа YFe1−xCrxO3: отрицательная намагниченность и спиновая переориентация, ФТТ 66, 888 (2024)
- 66. E. V. Vasinovich and A. S. Moskvin, Weak Ferrimagnets of the Y Fe1−xCrxO3 Type: Negative Magnetization and Spin Reorientation, Phys. Solid State 66, 858 (2024), doi: 10.61011/PSS.2024.06.58699.17HH.
- 67. A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Angular Dependence of the Superexchange Interaction Fe3+-O2−-Cr3+, Hyperfine Interactions 1, 265 (1975), doi:10.1007/BF01022459.