1. К. И. Кугель, Д. И. Хомский, Эффект Яна – Теллера и магнетизм: соединения переходных металлов, УФН 136, 621 (1982)
2. K. I. Kugel, D. I. Khomskii, The Jahn – Teller Effect and Magnetism: Transition Metal Compounds, Physics-Uspekhi 25, 231 (1982), doi:10.1070/PU1982v025n04ABEH004537.
3. D. Khomskii, Transition Metal Compounds, Cambridge Univ. Press (2014).
4. A. S. Moskvin, Perspectives of Disproportionation Driven Superconductivity in Strongly Correlated 3d Compounds, J. Phys.: Condens. Matter 25, 085601 (2013), doi:10.1088/0953-8984/25/8/085601.
5. A. Moskvin, Jahn – Teller Magnets, Magnetochemistry 9, 224 (2023), doi:10.3390/magnetochemistry9110224.
6. H. Sun, M. Huo, X. Hu et al., Signatures of Superconductivity Near 80K in a Nickelate Under High Pressure, Nature 621, 493 (2023), doi:10.1038/s41586-023-06408-7.
7. Jun Hou, Peng-Tao Yang, Zi-Yi Liu et al., Emergence of High-Temperature Superconducting Phase in La3Ni2O7 Crystals, Chin. Phys. Lett. 40, 117302 (2023), doi:10.1088/0256-307X/40/11/117302.
8. Y. Zhang, D. Su, Y. Huang et al., High-Temperature Superconductivity with Zero Resistance and Strange-Metal Behaviour in La3Ni2O7−Δ, Nat. Phys. 20, 1269 (2024), doi:10.1038/s41567-024-02515-y.
9. H. Katayama-Yoshida, K. Kusakabe, H. Kizaki, and A. Nakanishi, General Rule and Materials Design of Negative Effective U System for High-Tc Superconductivity, Appl. Phys. Express 1, 081703 (2008), doi:10.1143/APEX.1.081703.
10. A. S. Moskvin, Pseudo-Jahn –Teller Centers and Phase Separation in the Strongly Correlated Oxides With Nonisovalent Substitution: Cuprates and Manganites, Physica B 252, 186 (1998).
11. A. S. Moskvin, Charge States of Strongly Correlated 3d Oxides: From Typical Insulator to Unconventional Electron-Hole Bose Liquid, Low Temp. Phys. 33, 234 (2007).
12. I. I. Mazin, D. I. Khomskii, R. Lengsdor et al., Charge Ordering as Alternative to Jahn –Teller Distortion, Phys. Rev. Lett. 98, 176406 (2007), doi:10.1103/PhysRevLett.98.176406.
13. A. S. Moskvin, Disproportionation and Electronic Phase Separation in Parent Manganite LaMnO3, Phys. Rev. B 79, 115102 (2009), doi:10.1103/PhysRevB.79.115102.
14. A. S. Moskvin, True Charge Transfer Gap in Parent Insulating Cuprates, Phys. Rev. B 84, 075116 (2011).
15. R. J. Green, M. W. Haverkort, and G. A. Sawatzky, Bond Disproportionation and Dynamical Charge Fluctuations in the Perovskite Rare-Earth Nickelates, Phys. Rev. B 94, 195127 (2016).
16. А. С. Москвин, Приближают ли нас методы DFT, L(S)DA, LDA+U, LDA+DMFT... к правильному описанию оптического отклика для сильнокоррелированных систем? Опт. и спектр. 121, 515 (2016)
17. S. Moskvin, DFT, L(S)DA, LDA+U, LDA+DMFT, Whether We Do Approach to a Proper Description of Optical Response for Strongly Correlated Systems? Opt. and Spectrosc. 121, 467 (2016), doi:10.1134/S0030400X16100167.
18. O. I. Malyi and A. Zunger, False Metals, Real Insulators, and Degenerate Gapped Metals, Appl. Phys. Rev. 7, 041310 (2020), doi:10.1063/5.0015322.
19. M. Takano, N. Nakanishi, Y. Takeda, S. Naka, and T. Takada, Charge Disproportionation in CaFeO3 Studied With the M¨ossbauer Effect, Materials Res. Bull. 12, 923 (1977), doi:10.1016/00255408(77)90104-0.
20. A. Subedi, O. E. Peil, and A. Georges, Low-Energy Description of the Metal-Insulator Transition in the Rare-Earth Nickelates, Phys. Rev. B 91, 075128 (2015).
21. E. Dagotto, T. Hotta, and A. Moreo, Colossal Magnetoresistant Materials: The Key Role of Phase Separation, Phys. Rep. 344, 1 (2001), doi:10.1016/S0370-1573(00)00121-6.
22. T. M. Rice and L. Sneddon, Real-Space and K-Space Electron Pairing in BaPb1−xBixO3, Phys. Rev. Lett. 47, 689 (1981).
23. A. Moskvin and Y. Panov, Effective-Field Theory for Model High-Tc Cuprates, Condens. Matter 6, 24 (2021), doi:10.3390/condmat6030024.
24. A. S. Moskvin and Yu. D. Panov, Model of Charge Triplets for High-Tc Cuprates, J. Magn. Magn. Mater. 550, 169004 (2022), doi:10.1016/j.jmmm.2021.169004.
25. C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. 82, 403 (1951).
26. P. W. Anderson and H. Hasegawa, Considerations on Double Exchange, Phys. Rev. 100, 675 (1955), doi:10.1103/physrev.100.675.
27. P. G. de Gennes, Effects of Double Exchange in Magnetic Crystals, Phys. Rev. 118, 141 (1960).
28. E. M¨uller-Hartmann and E. Dagotto, Electronic Hamiltonian for Transition-Metal Oxide Compounds, Phys. Rev. B 54, R6819 (1996).
29. A. Moskvin, Structure-Property Relationships for Weak Ferromagnetic Perovskites, Magnetochemistry 7, 111 (2021), doi:10.3390/magnetochemistry7080111.
30. А. С. Москвин, Взаимодействие Дзялошинского и обменно-релятивистские эффекты в ортоферритах, ЖЭТФ 159, 607 (2021)
31. S. Moskvin, Dzyaloshinskii Interaction and Exchange-Relativistic Effects in Orthoferrites, JETP 132, 517 (2021), doi:10.1134/S1063776121040245.
32. M. L. Medarde, Structural, Magnetic and Electronic Properties of RNiO3 Perovskites (R = Rare Earth), J. Phys.: Condens. Matter 9, 1679 (1997).
33. Y. M. Klein, M. Kozlowski, A. Linden et al., ReNiO3 Single Crystals (Re = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) Grown From Molten Salts Under 2000 Bar of Oxygen Gas Pressure, Crystal Growth Des. 21, 4230 (2021), doi:10.1021/acs.cgd.1c00474.
34. M. Hepting, The Rare-Earth Nickelates, in Ordering Phenomena in Rare-Earth Nickelate Heterostructures, Springer Theses, Springer, Cham (2017), doi:10.1007/978-3-319-60531-9-2.
35. G. Giovannetti, S. Kumar, D. Khomskii, S. Picozzi, and J. van den Brink, Multiferroicity in Rare-Earth Nickelates RNiO3, Phys. Rev. Lett. 103, 156401 (2009).
36. D. Kumar, K. P. Rajeev, J. A. Alonso, and M. J. Martinez-Lope, Spin-Canted Magnetism and Decoupling of Charge and Spin Ordering in NdNiO3, Phys. Rev. B 88, 014410 (2013).
37. M. Hepting, R. J. Green, Z. Zhong et al., Complex Magnetic Order in Nickelate Slabs, Nat. Phys. 14, 1097 (2018), doi:10.1038/s41567-018-0218-5.
38. J. Li, R. J. Green, C. Dominguez et al., Signatures of Polarized Chiral Spin Disproportionation in Rare Earth Nickelates, Nat. Commun. 15, 7427 (2024), doi:10.1038/s41467-024-51576-3.
39. N. Ortiz Hernandez, E. Skoropata, H. Ueda et al., Magnetoelectric Effect in Multiferroic Nickelate Perovskite YNiO3, Commun. Mater. 5, 154 (2024), doi:10.1038/s43246-024-00604-2.
40. E. Bousquet and A. Cano, Non-Collinear Magnetism and Multiferroicity: The Perovskite Case, Phys. Sci. Rev. 8, 479 (2023), doi:10.1515/psr-2019-0071.
41. J. L. Garcia-Mu˜noz, J. Rodriguez-Carvajal, and P. Lacorre, Neutron-Diffraction Study of the Magnetic-Ordering in the Insulating Regime of the Perovskites RNiO3 (R=Pr and Nd), Phys. Rev. B 50, 978 (1994), doi:10.1103/PhysRevB.50.978.
42. J. Rodriguez-Carvajal, S. Rosenkranz, M. Medarde et al., Neutron-Diffraction Study of the Magnetic and Orbital Ordering in 154SmNiO3 and 153EuNiO3, Phys. Rev. B 57, 456 (1998).
43. M. T. Fernandez-Diaz, J. A. Alonso, M. J. Martinez-Lope et al., Magnetic Structure of the HoNiO3 Perovskite, Phys. Rev. B 64, 144417 (2001), doi:10.1103/PhysRevB.64.144417.
44. Д. А. Варшалович, А. Н. Москалев, В. К. Херсонский, Квантовая теория углового момента, Издво Наука, Ленинград (1975)
45. D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore (1988).
46. Q. Huang, A. Santoro, J. W. Lynn et al., Structure and Magnetic Order in Undoped Lanthanum Manganite, Phys. Rev. B 55, 14987 (1997), doi:10.1103/PhysRevB.55.14987.
47. J.-S. Zhou and J. B. Goodenough, Paramagnetic Phase in Single-Crystal LaMnO3, Phys. Rev. B 60, R15002 (1999), doi:10.1103/PhysRevB.60.R15002.
48. R. Raffaelle, H. U. Anderson, D. M. Sparlin, and P. E. Parris, Transport Anomalies in the High-Temperature Hopping Conductivity and Thermopower of Sr-Doped La(Cr,Mn)O3, Phys. Rev. B 43, 7991 (1991), doi:10.1103/PhysRevB.43.7991.
49. J. A. M. Van Roosmalen and E. H. P. Cordfunke, The Defect Chemistry of LaMnO3+δ: 4. Defect Model for LaMnO3+δ, J. Sol. St. Chem. 110, 109 (1994), doi:10.1006/JSSC.1994.1143.
50. Y. Murakami, J. P. Hill, D. Gibbs et al., Resonant XRay Scattering From Orbital Ordering in LaMnO3, Phys. Rev. Lett. 81, 582 (1998).
51. M. v. Zimmermann, C. S. Nelson, Y.-J. Kim et al., Resonant X-Ray-Scattering Study of Octahedral Tilt Ordering in LaMnO3 and Pr1−xCaxMnO3, Phys. Rev. B 64, 064411 (2001).
52. Kim Yong-Jihn, P-Wave Pairing and Colossal Magnetoresistance in Manganese Oxides, Mod. Phys. Lett. B 12, 507 (1998), doi:10.1142/S0217984998000615.
53. V. N. Krivoruchko, Local Spin-Triplet Superconductivity in Half-Metallic Manganites: A Perspective Platform for High-Temperature Topological Superconductivity, Low Temp. Phys. 47, 901 (2021), doi:10.1063/10.0006560.
54. V. Markovich, I. Fita, A. Wisniewski et al., Metastable Diamagnetic Response of 20 nm La1−xMnO3 Particles, Phys. Rev. B 77, 014423 (2008), doi:10.1103/PhysRevB.77.014423.
55. M. Kasai, T. Ohno, Y. Kauke et al., CurrentVoltage Characteristics of YBa2Cu3Oy/La0.7Ca0.3MnOz/YBa2Cu3Oy Trilayered Type Junctions, Jpn. J. Appl. Phys. 29, L2219 (1990), doi 10.1143/JJAP.29.L2219.
56. А. В. Митин, Г. М. Кузьмичева, С. И. Новикова, Сложные оксиды на основе марганца со структурой перовскита и производной от нее, Ж. неорг. химии 42, 1953 (1997)
57. V. Mitin, G. M. Kuz’micheva, and S. I. Novikova, Mixed Oxides of Manganese with Perovskite and Perovskite-related Structures, Russian J. Inorg. Chem. 42, 1791 (1997), doi:10.1002/CHIN.199814029.
58. R. Nath, A. K. Raychaudhuri, Ya. M. Mukovskii et al., Electric Field Driven Destabilization of the Insulating State in Nominally Pure LaMnO3, J. Phys.: Condens. Matter 25, 155605 (2013), doi:10.1088/0953-8984/25/15/155605.
59. R. Cabassi, F. Bolzoni, E. Gilioli et al., Jahn – TellerInduced Crossover of the Paramagnetic Response in the Singly Valent Eg System LaMn7O12, Phys.Rev. B 81, 214412 (2010), doi:10.1103/PhysRevB.81.214412.
60. S. Schaile, H.-A. Krug von Nidda, J. Deisenhofer et al., Korringa-Like Relaxation in the High-Temperature Phase of A-Site Ordered YBaMn2O6, Phys. Rev. B 85, 205121 (2012), doi:10.1103/PhysRevB.85.205121.
61. T. Hotta and E. Dagotto, Theory of Manganites, in Colossal Magnetoresistive Manganites, ed. By T. Chatterji, Springer, Dordrecht (2004), doi:10.1007/978-94-015-1244-2-5.
62. A. М. Кадомцева, А. С. Москвин, И. Г. Бострем, Б. М. Ванклин, Н. А. Хафизова, Природа аномальных магнитных свойств ферритов-хромитов иттрия, ЖЭТФ 72, 2286 (1977)
63. M. Kadomtseva, A. S. Moskvin, I. G. Bostrem et al., Nature of the Anomalous Magnetic Properties of Yttrium Ferrite Chromites, Sov. Phys. JETP 45, 1202 (1977).
64. I. Fita, V. Markovich, A. S. Moskvin et al., Reversed Exchange-Bias Effect Associated With Magnetization Reversal in the Weak Ferrimagnet LuFe0.5Cr0.5O3, Phys. Rev. B 97, 104416 (2018).
65. Е. В. Васинович, А. С. Москвин, Слабые ферримагнетики типа YFe1−xCrxO3: отрицательная намагниченность и спиновая переориентация, ФТТ 66, 888 (2024)
66. E. V. Vasinovich and A. S. Moskvin, Weak Ferrimagnets of the Y Fe1−xCrxO3 Type: Negative Magnetization and Spin Reorientation, Phys. Solid State 66, 858 (2024), doi: 10.61011/PSS.2024.06.58699.17HH.
67. A. S. Moskvin, N. S. Ovanesyan, and V. A. Trukhtanov, Angular Dependence of the Superexchange Interaction Fe3+-O2−-Cr3+, Hyperfine Interactions 1, 265 (1975), doi:10.1007/BF01022459.
Комментарии
Сообщения не найдены