ОСЦИЛЛЯЦИИ РАБИ ПРИ ТРЕХФОТОННОМ ЛАЗЕРНОМ ВОЗБУЖДЕНИИ ОДИНОЧНОГО РИДБЕРГОВСКОГО АТОМА РУБИДИЯ В ОПТИЧЕСКОЙ ДИПОЛЬНОЙ ЛОВУШКЕ

Код статьи
S0044451024100109-1
DOI
10.31857/S0044451024100109
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 166 / Номер выпуска 4
Страницы
535-547
Аннотация
В эксперименте по трехфотонному лазерному возбуждению 5S1/2 → 5P3/2 → 6S1/2 → 37P3/2 одиночного ридберговского атома 87Rb, захваченного в оптическую дипольную ловушку, впервые наблюдались трехфотонные осцилляции населенностей Раби между основным и ридберговским состоянием. Одиночный атом регистрировался оптическим методом по сигналу резонансной флуоресценции на малошумящей sCMOS-видеокамере. Измерялась относительная вероятность атому остаться в ловушке после действия трех синхронизованных возбуждающих лазерных импульсов с длительностями, изменяемыми от 100 нс до 2 мкс. Особенностью эксперимента было использование интенсивного лазерного излучения с длиной волны 1367 нм на второй ступени возбуждения, обеспечивающего однофотонную частоту Раби до 2 ГГц для управления эффективными отстройками промежуточных уровней трехфотонного перехода за счет динамического эффекта Штарка. Зарегистрированы осцилляции Раби с частотой от 1 до 5 МГц в зависимости от интенсивности лазерных импульсов первой и второй ступеней возбуждения при времени когерентности 0.7−0.8 мкс. Обсуждаются пути увеличения времени когерентности и контраста трехфотонных осцилляций Раби для применений в квантовой информатике с ридберговскими атомами.
Ключевые слова
Дата публикации
26.07.2025
Всего подписок
0
Всего просмотров
45

Библиография

  1. 1. S. J. Evered, D. Bluvstein, M. Kalinowski, et al., Nature 622, 268 (2023).
  2. 2. H. J. Manetsch, G. Nomura, E. Bataille, K.˝. Leung, X. Lv, and M. Endres, arXiv: 2403.12021 (https://arxiv.org/abs/2403.12021).
  3. 3. T. F. Gallagher, Rydberg Atoms, Cambridge University Press, Cambridge (1994).
  4. 4. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
  5. 5. M. Saffman, J. Phys. B 49, 202001 (2016).
  6. 6. L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and C. Jurczak, Quantum 4, 327 (2020).
  7. 7. T. Cubel, B. K. Teo, V. S. Malinovsky, J. R. Guest, A. Reinhard, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. A 72, 023405 (2005).
  8. 8. M. Reetz-Lamour, J. Deiglmayr, T. Amthor, and M. Weidemuller, New J. Phys. 10, 045026 (2008).
  9. 9. T. M. Graham, Y. Song, J. Scott et al., Nature 604, 457 (2022).
  10. 10. P. Thoumany, T. Hansch, G. Stania, L. Urbonas, and Th. Becker, Opt. Lett. 34, 1621 (2009).
  11. 11. V. A. Sautenkov, S. A. Saakyan, A. A. Bobrov, E.V. ˙ Vilshanskaya, B. B. Zelener, and B. V. Zelener, ˙ J. Opt. Soc. Am. B 35, 1546 (2018).
  12. 12. P. Cheinet, K.-L. Pham, P. Pillet, I. I. Beterov, I. N. Ashkarin, D. B. Tretyakov, E. A. Yakshina, V. M. Entin, and I. I. Ryabtsev, Quantum Electronics 50, 213 (2020)].
  13. 13. I. N. Ashkarin, I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, K.-L. Pham, S. Lepoutre, and P. Pillet, Phys. Rev. A 106, 032601 (2022).
  14. 14. I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, Phys. Rev. A 84, 053409 (2011).
  15. 15. V. M. Entin, E. A. Yakshina, D. B. Tretyakov, I. I. Beterov, and I. I. Ryabtsev, JETP 116, 721 (2013)].
  16. 16. E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Beterov, and I. I. Ryabtsev, Quantum Electronics 48, 886 (2018)].
  17. 17. E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Beterov, I. I. Ryabtsev, JETP 130, 170 (2020)].
  18. 18. D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Beterov, and I. I. Ryabtsev, Quantum Electronics 52, 513 (2022)].
  19. 19. I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, N. V. Al’yanova, D. A. Skvortsova, G. Suliman, T. R. Zagirov, V. M. Entin, and I. I. Ryabtsev, JETP 137, 246 (2023)].
  20. 20. G. S. Agarwal, Phys. Rev. Lett. 37, 1383 (1976).
  21. 21. S. M. Bohaichuk, F. Ripka, V. Venu, F. Christaller, C. Liu, M. Schmidt, H. Kobler, and J. P. Shaffer, arXiv: 2304.07409 (https://arxiv.org/abs/2304.07409).
QR
Перевести