- Код статьи
- S0044451024100055-1
- DOI
- 10.31857/S0044451024100055
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 166 / Номер выпуска 4
- Страницы
- 490-499
- Аннотация
- Определены численные значения квантовых дефектов, использованные для расчетов частот и матричных элементов дипольных радиационных переходов СВЧ-диапазона между триплетными ридберговскими состояниями n3S1, n3P1, n3D2 и n3F3 серий атомов группы IIb с большими значениями главных квантовых чисел n > 20. Результаты расчетов в рамках полуэмпирических методов теории квантового дефекта и модельного потенциала Фьюса аппроксимированы квадратичными полиномами. Коэффициенты полиномов табулированы вместе с численными значениями частот и матричных элементов и могут быть использованы для измерения напряженности полей по СВЧ-индуцированному расщеплению резонанса электромагнитно-индуцированной прозрачности, для разработки и планирования исследований характеристик СВЧ-излучения с использованием ридберговских атомов.
- Ключевые слова
- Дата публикации
- 26.07.2025
- Всего подписок
- 0
- Всего просмотров
- 46
Библиография
- 1. J. A. Sedlacek, A. Schwettmann, H. K¨ubler, R. L¨ow, T. Pfau, and J. P. Shaffer, Microwave Electrometry with Rydberg Atoms in a Vapour Cell Using Bright Atomic Resonances, Nat. Phys. 8, 819 (2012).
- 2. C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, Broadband Rydberg Atom-Based Electric-Field Probe for SI-Traceable, Self-Calibrated Measurements, IEEE Trans. Antennas Propag. 62, 6169 (2014).
- 3. H. Fan, S. Kumar, J. Sedlacek, H. K¨ubler, Sh. Karimkashi, and J. P. Shaffer, Atom Based RF Electric Field Sensing, J. Phys. B: Atom. Mol. Opt. Phys. 48, 202001 (2015).
- 4. C. L. Holloway, M. T. Simons, J. A. Gordon, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, Atom-Based RF Electric Field Metrology: from Self-Calibrated Measurements to Subwavelength and Near-Field Imaging, IEEE Trans. Electromagn. Compat. 59, 717 (2017).
- 5. D. A. Anderson and G. Raithel, ContinuousFrequency Measurements of High-Intensity Microwave Electric Fields with Atomic Vapor Cells, Appl. Phys. Lett. 111, 053504 (2017).
- 6. Y. Jiao, L. Hao, X. Han, S. Bai, G. Raithel, J. Zhao, and S. Jia, Atom-Based Radio-Frequency Field Calibration and Polarization Measurement Using Cesium nDJ Floquet States, Phys. Rev. Appl. 8, 014028 (2017).
- 7. Z. Song, Z. Feng, X. Liu, D. Li, H. Zhang, J. Liu, and L. Zhang, Quantum-Based Determination of Antenna Finite Range Gain by Using Rydberg Atoms, IEEE Antennas Wireless Propag. Lett. 16, 1589 (2017).
- 8. M. T. Simons, J. A. Gordon, and C. L. Holloway, Fiber-Coupled Vapor Cell for a Portable Rydberg Atom-Based Radio Frequency Electric Field Sensor, Appl. Opt. 57, 6456 (2018).
- 9. Z. Song, H. Liu, X. Liu, W. Zhang, H. Zou, J. Zhang, and J. Qu, Rydberg-Atom-Based Digital Communication Using a Continuously Tunable Radio-Frequency Carrier, Opt. Express 27, 8848 (2019).
- 10. E. F. Stelmashenko, O. A. Klezovich, V. N. Baryshev, V. A. Tishchenko, I. Yu. Blinov, V. G. Palchikov, and V. D. Ovsyannikov, Measuring the Electric Field Strength of Microwave Radiation at the Frequency of the Radiation Transition between Rydberg States of Atoms 85Rb, Opt. Spectrosc. 128, 1067 (2020)].
- 11. V. D. Ovsiannikov, V. G. Palchikov, and I. L. Glukhov, Microwave Field Metrology Based on Rydberg States of Alkali-Metal Atoms, Photonics 9, 635 (2022).
- 12. I. L. Glukhov, A. A. Kamenski, V. D. Ovsiannikov, and V. G. Pal’chikov, Precision Spectroscopy of Rydberg States in Alkaline Earth Atoms for Millimeter-Wave Radiation Measurement, JETP 137, 169 (2023)].
- 13. I. L. Glukhov, A. A. Kamenski, V. D. Ovsiannikov, and V. G. Palchikov, Precision Spectroscopy of Radiation Transitions between Singlet Rydberg States of the Group IIb and Yb Atoms, Photonics 10, 1153 (2023).
- 14. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer-Verlag, Berlin – G¨ottingen – Heidelberg, Germany (1957)].
- 15. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory, Pergamon Press, Oxford, UK (1989), Secs. 39, 40.
- 16. Y.-Li. Zhou, D. Yan, and W. Li, Rydberg Electromagnetically Induced Transparency and Absorption of Strontium Triplet States in a Weak Microwave Field, Phys. Rev. A 105, 053714 (2022).
- 17. 2024, February 16]. National Institute of Standards and Technology, Gaithersburg, MD.
- 18. V. V. Kazakov, V. G. Kazakov, V. S. Kovalev, O. I. Meshkov, and A. S. Yatsenko, Electronic Structure of Atoms: Atomic Spectroscopy Information System, Phys. Scripta 92, 105002 (2017).
- 19. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency, Phys. Rev. Lett. 98, 113003 (2007).
- 20. F. B. Dunning, T. C. Killian, S. Yoshida, and J. Burgd¨orfer, Recent Advances in Rydberg Physics Using Alkaline-Earth Atoms, J. Phys. B: Atom. Mol. Opt. Phys. 49, 112003 (2016).
- 21. M. J. Seaton, Quantum Defect Theory, Rep. Prog. Phys. 46, 167 (1983).
- 22. W. C. Martin, Series Formulas for the Spectrum of Atomic Sodium (Na I), J. Opt. Soc. Amer. 70, 784 (1980).
- 23. F. Robicheaux, Calculations of Long Range Interactions for 87Sr Rydberg States, J. Phys. B: Atom. Mol. Opt. Phys. 52, 244001 (2019).
- 24. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols, World Scientific, Singapore (1988)].
- 25. I. I. Sobelman, An Introduction to the Theory of Atomic Spectra, Pergamon Press, London, UK (1972)].
- 26. N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Atoms in a Laser Field, Phys. Rep. 141, 320 (1986).