- Код статьи
- S0044451024080133-1
- DOI
- 10.31857/S0044451024080133
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 166 / Номер выпуска 2
- Страницы
- 277-289
- Аннотация
- Журнал экспериментальной и теоретической физики, BKT TRANSITION IN PHYLLOTAXIS
- Ключевые слова
- Дата публикации
- 26.07.2025
- Всего подписок
- 0
- Всего просмотров
- 43
Библиография
- 1. Livio, The Golden Ratio: The Story of φ,the World’s Most Astonishing Number, Broadway Books, New York (2008).
- 2. Rothen and A.-J. Koch, Phyllotaxis, or the Properties of Spiral Lattices. -I. Shape Invariance Inder Compression, J. de Physique 50, 633 (1989).
- 3. Rothen and A. J. Koch, Phyllotaxis or the Properties of Spiral Lattices. - II. Packing of Circles Along Logarithmic Spirals, J. de Physique 50, 1603 (1989).
- 4. M. Kunz and F. Rothen, Phyllotaxis or the Properties of Spiral Lattices. III. an Algebraic Model of Morphogenesis, J. de Physique I 2, 2131 (1992).
- 5. L. Levitov, Energetic Approach to Phyllotaxis, Europhysics Letters 14, 533 (1991).
- 6. L. S. Levitov, Phyllotaxis of Flux Lattices in Layered Superconductors, Phys. Rev. Lett. 66, 224 (1991).
- 7. S. Douady and Y. Couder, Phyllotaxis as a Physical Self-Organized Growth Process, Phys. Rev. Lett. 68, 2098 (1992).
- 8. Nisoli, N. M. Gabor, P. E. Lammert, J. D. Maynard, and V. H. Crespi, Static and Dynamical Phyllotaxis in a Magnetic Cactus, Phys. Rev. Lett. 102, 186103 (2009).
- 9. S. Gukov, RG Flows and Bifurcations, Nuclear Physics B 919, 583 (2017).
- 10. B. Jepsen and F. K. Popov, Homoclinic Renormalization Group Flows, or When Relevant Operators Become Irrelevant, Phys. Rev. Lett. 127, 141602 (2021).
- 11. M. M. Bosschaert, C. B. Jepsen, and F. K. Popov, Chaotic RG Flow in Tensor Models, Phys. Rev. D 105, 065021 (2022).
- 12. M. Wilkinson, Critical Properties of Electron Eigenstates in Incommensurate Systems, Proc. Royal Soc. London A. Math. Phys. Sci. 391, 305 (1984).
- 13. M. Wilkinson, An Exact Renormalisation Group for Bloch Electrons in a Magnetic Field, J. Phys. A: Math. Gen. 20, 4337 (1987).
- 14. S. Aubry, Devil’s Staircase and Order Without Periodicity in Classical Condensed Matter, J. de Physique 44, 147 (1983).
- 15. Bak, Commensurate Phases, Incommensurate Phases and the Devil’s Staircase, Rep. Progr. Phys. 45, 587 (1982).
- 16. J. Bergholtz, T. H. Hansson, M. Hermanns, and A. Karlhede, Microscopic Theory of the Quantum Hall Hierarchy, Phys. Rev. Lett. 99, 256803 (2007).
- 17. J. Bergholtz and A. Karlhede, Quantum Hall System in Tao-Thouless limit, Phys. Rev. B 77, 155308 (2008).
- 18. D. Lundholm, Many-Anyon Trial States, Phys. Rev. A 96, 012116 (2017).
- 19. M. Planat and C. Eckert, On the Frequency and Amplitude Spectrum and the Fluctuations at the Output of a Communication Receiver, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 47, 1173 (2000).
- 20. Trifonov, L. Pascualucci, R. Dalla-Favera, and R. Rabadan, Fractal-like Distributions over the Rational Numbers in Highthroughput Biological and Clinical Data, Sci. Rep. 1, 191 (2011).
- 21. M. Middendorf, E. Ziv, and C. Wiggins, Inferring Network Mechanisms: The Drosophila Melanogaster Protein Interaction Network, PNAS 102, 3192 (2005).
- 22. Altland, D. Bagrets, and A. Kamenev, Topology versus Anderson Localization: Nonperturbative Solutions in One Dimension, Phys. Rev. B 91, 085429 (2015).
- 23. M. Pruisken, On Localization in the Theory of the Quantized Hall Effect: A Twodimensional Ralization of the θ-Vacuum, Nucl. Phys. B 235, 277 (1984).
- 24. Levine, S. Libby, and A. Pruisken, Theory of the Quantum Hall Effect (i)-(iii), Nucl. Phys. B 240, 30 (1984).
- 25. Montonen and D. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett. B 72, 117 (1977).
- 26. J. L. Cardy and E. Rabinovici, Phase Structure of ZP Models in the Presence of a θ-Parameter, Nucl. Phys. B 205, 1 (1982).
- 27. K. Bulycheva and A. Gorsky, Limit Cycles in Renormalization Group Dynamics, Physics Uspekhi 57, 171 (2014).
- 28. R. Musin and A. S. Tarasov, The Tammes problem for n = 14, Experimental Mathematics 24, 460 (2015).
- 29. L. Altschuler, T. J. Williams, E. R. Ratner, R. Tipton, R. Stong, F. Dowla, and F. Wooten, Possible Global Minimum Lattice Cconfigurations for Thomson’s Problem of Charges on a Sphere, Phys. Rev. Lett. 78, 2681 (1997).
- 30. Abrikosov, The Magnetic Properties of Superconducting Alloys, J. Phys. Chem. Solids 2, 199 (1957).
- 31. Rammal, G. Toulouse, and M. A. Virasoro, Ultrametricity for Physicists, Rev. Mod. Phys. 58, 765 (1986).
- 32. O’Sullivan, Formulas for Nonholomorphic Eisenstein Series and for the Riemann Zeta Function at Odd Integers, Research in Number Theory 4, 36 (2018).
- 33. P. Ribeiro and S. Yakubovich, On the Epstein Zeta Function and the Zeros of a Class of Dirichlet Series (2022), arXiv:2112.10561 [math.NT]
- 34. L. Siegel and S. Raghavan, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Mumbai, India (1961).
- 35. Motohashi, A New Proof of the Limit Formula of Kronecker, Proc. Japan Academy 44, 614 (1968).
- 36. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory. Chapter 3, 41, SpringerVerlag (1990).
- 37. B. Kaplan, J.-W. Lee, D. T. Son, and M. A. Stephanov, Conformality Lost, Phys. Rev. D 80, 125005 (2009).
- 38. A. Lutken and G. G. Ross, Implications of Experimental Probes of the RG-Flow in Quantum Hall Systems (2009), arXiv:0906.5551 [condmat. other]
- 39. Carpentier, Renormalization of Modular Invariant Coulomb Gas and Sine-Gordon Theories, and the Quantum Hall Flow Diagram, J. Phys. A: Math. Gen. 32, 3865 (1999).
- 40. K. Fischer, Kosterlitz-Thouless Transition in Layered High-Tc Superconductors, Physica C: Superconductivity 210, 179 (1993).
- 41. Flack, A. Gorsky, and S. Nechaev, Generalized Devil’s Staircase and RG Flows, Nucl. Phys. B 996, 116376 (2023).
- 42. Cristiano Nisoli, Nathaniel M. Gabor, Paul E. Lammert, J. D. Maynard, and Vincent H. Crespi, Annealing a Magnetic Cactus into Phyllotaxis, Phys. Rev. E 81, 046107 (2010).
- 43. B. Balagurov and V. Vaks, Random Walks of a Particle on Lattices with Traps, Sov. Phys. JETP 38, 968 (1974).
- 44. M. Donsker, S. Varadhan, Large Deviations for Stationary Gaussian Processes, Comm. Math. Phys. 97, 187 (1985).