MAGNITNYE I SVERKhPROVODYaShchIE SVOYSTVA DOPIROVANNYKh Fe VYSOKOTEMPERATURNYKh SVERKhPROVODNIKOV YBaCuO, SINTEZIROVANNYKh ZOL'–GEL'-METODOM

PII
S0044451024080108-1
DOI
10.31857/S0044451024080108
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 2
Pages
246-254
Abstract
Для серии допированных железом поликристаллических высокотемпературных сверхпроводников Y1–xFexBa2CuOy (0 ⩽ x ⩽ 0.05), синтезированных с использованием нитратно-цитратного варианта золь–гель-методики, проведены исследования структу3рных (рентгеновским и электронно-микроскопическим методами) и магнитных (в переменных и постоянных магнитных полях) свойств. Для этих образцов определены зависимости от степени допирования кристаллографических параметров, размеров кристаллитов, температур перехода в сверхпроводящее состояние, а также вид и размах гистерезиса намагниченности в полях до 6Тл. Рассчитаны полевые зависимости плотности внутрикристаллического критического тока Jc. Показано, что однородное распределение допанта по объему кристаллитов вследствие применения золь–гель-методики приводит к существенному улучшению функциональных параметров по сравнению с образцами, полученными твердофазным методом. Улучшается микроструктура, что проявляется в увеличении размеров и более четкой огранке кристаллитов, а также сужается температурный интервал перехода в сверхпроводящее состояние, увеличиваются размах магнитополевого гистерезиса намагниченности и критический ток. В результате, в золь–гель-образцах при степени допирования железом x ≈ 0.03 реализуется эффект увеличения Jc, превышающий порядок величины.
Keywords
Date of publication
26.07.2025
Number of purchasers
0
Views
50

References

  1. 1. G.V.M. Kiruthika, K.V. Govindan Kutty, and U.V. Varadarju, Solid State Ionics 110, 335 (1998).
  2. 2. A.V. Shlyakhtina, N.V. Lyskov, A.N. Shchegolikhin, S.A. Chernyak, A.V. Knotko, I.V. Kolbanev, and L.G. Shcherbakova, Ceram. Int. 46, 17383 (2020).
  3. 3. Е.Д. Политова, Г.М. Калева, А.В. Мосунов,
  4. 4. С.Ю. Стефанович, Е.В. Клюкина, Е.А. Беспалова, А.В. Лопатин, Н.М. Метальников, М.Э. Сапрыкин, А.Б. Логинов, И.В. Оразов, Б.А. Логинов, Неорган.матер. 58, 1377 (2022).
  5. 5. J. Ma, K. Chen, C. Li, X. Zhang, and L. An, Ceram. Int. 47, 24348 (2021).
  6. 6. J. Zhang , S. Liu, Z. Tian, Y. Zhang, and Z. Shi, Materials 16, 2214 (2023).
  7. 7. J. Mr´azek, S. Kamr´adkov´a, J. Burˇs´ık, R. Sk´ala, I. Bartoˇn, P. Var´ak, Y. Baravets, and O. Podrazk¨y, J. Sol-Gel Sci.Technol. 107, 320 (2023).
  8. 8. B. Keimer, S.A. Kivelson, M.R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).
  9. 9. Л. Г. Мамсурова, К.С. Пигальский, Н. Г. Трусевич, А.А. Вишнёв, М.А. Рогова, С.Ю. Гаврилкин, Ф.Ю. Цветков, Письма в ЖЭТФ 102, 752 (2015).
  10. 10. J. Shimoyama, Y. Tazaki, Y. Ishii, T. Nakashima, S. Horii, and K. Kishio, J. of Phys.: Conf. Series 43, 235 (2006).
  11. 11. Y. Ishii, J. Shimoyama, Y. Tazaki, T. Nakashima, S. Horii, and K. Kishio, Appl.Phys. Lett. 89, 202514 (2006).
  12. 12. K. Rogacki, B. Dabrowski, and O. Chmaissem, Phys. Rev.B 73, 224518 (2006).
  13. 13. Los, B. Dabrowski, and K. Rogacki, Cur.Appl. Phys. 27, 1 (2021).
  14. 14. R. F. Lopes, V.N. Vieira, F.T. Dias, P. Pureur, J. Schaf, M. L. Hneda, and J. J. Roa, IEEE Trans.: Appl. Supercond. 26, 8002004 (2016).
  15. 15. Minghu, C. Meng, J. Zhengkuan, and Z. Qirui, Jpn. J.Appl.Phys. 33, 3892 (1994).
  16. 16. D. M. Gokhfeld, D. A. Balaev, I. S. Yakimov, M. I. Petrov, and S.V. Semenov, Ceram. Inter. 43, 9985 (2017).
  17. 17. K. S.Pigalskiy, A.A.Vishnev, N.N.Efimov, A.V. Shabatin, and L. I. Trakhtenberg, Curr.Appl. Phys. 41, 116 (2022).
  18. 18. M. Kakihana, J. Sol-Gel Sci.Technol. 6, 7 (1996).
  19. 19. R. S. Liu, W.N. Wang, C.T. Chang, and P.T. Wu, Jpn. J.Appl.Phys. 28, L2155 (1989).
  20. 20. Blinov, V.G. Fleisher, H. Huhtinen, R. Laiho, E. L¨ahderanta, P. Paturi, Yu.P. Stepanov, and L. Vlasenko, Supercond. Sci.Technol. 10, 818 (1997).
  21. 21. J. Raittila, H. Huhtinen, P. Paturi, and Yu.P. Stepanov, Physica C 371, 90 (2002).
  22. 22. Л. Г. Мамсурова, Н. Г. Трусевич, А.А. Вишнёв, К.С. Пигальский, Л.И. Трахтенберг, Хим.физика 39, 66 (2020).
  23. 23. J.R. Clem and V.G. Kogan, Jap. J.Appl.Phys. 26, 1161 (1987).
  24. 24. А.М. Балагуров, Л.Г. Мамсурова, И.А. Бобриков, То Тхань Лоан, В.Ю. Помякушин, К.С. Пигальский, Н. Г. Трусевич, А.А. Вишнев, ЖЭТФ 141, 1144 (2012).
  25. 25. K.S.Pigalskiy, N.N.Efimov, P.N.Vasilyev, A.A.Vishnev, and L. I. Trakhtenberg, Physica C 612, 1354318 (2023).
  26. 26. T. Ugawa, S. Horii, T. Maeda, M. Haruta, and J. Shimoyama, Physica C 494, 41 (2013).
  27. 27. Y. Paltiel, E. Zeldov, Y.N. Myasoedov, H. Shtrikman, S. Brattacharya, M. J. Higgins, Z. L. Xiao, E.Y. Andrei, P. L. Gammel, and D. J. Bishop, Nature 403, 398 (2000).
  28. 28. P. Mikitik and E.H. Brandt, Phys.Rev.B 64, 184514 (2001).
QR
Translate