- PII
- S0044451024030015-1
- DOI
- 10.31857/S0044451024030015
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 3
- Pages
- 307-316
- Abstract
- Экспериментально исследованы особенности нелинейного поглощения коллоидных растворов нанопластинок CdSe толщиной 2.5 и 3.5 монослоя в зависимости от концентрации в случае их резонансного стационарного возбуждения наносекундными лазерными импульсами. Обнаружен рост амплитуды дифференциального пропускания и интенсивности насыщения поглощения на длинах волн экситонных переходов, связанных с тяжелыми дырками, для двух серий образцов при увеличении концентрации нанопластинок в коллоидном растворе, что объяснено процессом заполнения фазового пространства экситонов. Для коллоидных растворов нанопластинок высокой концентрации выявлена область отрицательных значений дифференциального пропускания при достаточно высокой интенсивности накачки и объяснена переходом от режима насыщения поглощения к режиму оптического усиления.
- Keywords
- Date of publication
- 26.07.2025
- Number of purchasers
- 0
- Views
- 46
References
- 1. E. Matijevic and W. D. Murphy, Preparation and Properties of Monodispersed Spherical Colloidal Particles of Cadmium Sulfide, J. Coll. Interface Sci. 86, 476 (1982).
- 2. A. D. Golinskaya, A. M. Smirnov, M. V. Kozlova et al., Tunable Blue-Shift of the Charge-Transfer Photoluminescence in Tetrapod-Shaped CdTe/CdSe Nanocrystals, Results Phys. 27, 104488 (2021).
- 3. A. Fiore, R. Mastria, M. G. Lupo et al., TetrapodShaped Colloidal Nanocrystals of II-VI Semiconductors Prepared by Seeded Growth, J. Am. Chem. Soc. 131, 2274 (2009).
- 4. S. Ithurria and B. Dubertret, Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level, J. Am. Chem. Soc. 130, 16504 (2008).
- 5. A. M. Smirnov, V. N. Mantsevich, D. S. Smirnov et al., Heavy-Hole and Light-Hole Excitons in Nonlinear Absorption Spectra of Colloidal Nanoplatelets, Sol. St. Comm. 299, 113651 (2019).
- 6. A. M. Smirnov, A. D. Golinskaya, B. M. Saidzhonov et al., Exciton-Exciton Interaction and Cascade Relaxation of Excitons in Colloidal CdSe Nanoplatelets, J. Luminescence 229, 117682 (2021).
- 7. A. S. Baimuratov, Y. K. Gun’ko, A. G. Shalkovskiy et al., Optical Activity of Chiral Nanoscrolls, Adv. Opt. Mat. 5, 1600982 (2017).
- 8. L. V. Keldysh, Excitons in Semiconductor-Dielectric Nanostructures, Phys. Stat. Sol. (a) 164, 3 (1997).
- 9. S. Malkmus, S. Kudera, L. Manna et al., ElectronHole Dynamics in CdTe Tetrapods, J. Phys. Chem. B 110, 17334 (2006).
- 10. C. Heyn, L. Ranasinghe, M. Zocher et al., ShapeDependent Stark Shift and Emission-Line Broadening of Quantum Dots and Rings, J. Phys. Chem. C 124, 19809 (2020).
- 11. E. Lhuillier, A. Robin, S. Ithurria et al., ElectrolyteGated Colloidal Nanoplatelets-Based Phototransistor and its Use for Bicolor Detection, Nano Lett. 14, 2715 (2014).
- 12. F. Meinardi, F. Bruni, and S. Brovelli, Luminescent Solar Concentrators for the Building-Integrated Photovoltaics, Nature Rev. Mat. 2, 1 (2017).
- 13. H. Lee, S. W. Yoon, J. P. Ahn et al., Synthesis of type II CdTe/CdSe heterostructure tetrapod nanocrystals for PV applications, Sol. Energy Mater. Sol. Cells 93, 779 (2009).
- 14. H. Lee, S. Kim, W.-S. Chung et al., Hybrid Solar Cells Based on Tetrapod Nanocrystals: The Effects of Compositions and Type II Heterojunction on Hybrid Solar Cell Performance, Sol. Energy Mater. Sol. Cells 95, 446 (2011).
- 15. Z. Chen, B. Nadal, B. Mahler et al., Quasi-2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence, Adv. Funct. Mat. 24, 295 (2014).
- 16. F. Chen, Q. Lin, H. Shen et al., Blue Quantum Dot-Based Electroluminescent Light-Emitting Diodes, Mat. Chem. Frontiers 4, 1340 (2020).
- 17. R. B. Vasiliev, D. N. Dirin, M. S. Sokolikova et al., Growth of Near-IR Luminescent Colloidal CdTe/CdS Nanoheterostructures Based on CdTe Tetrapods, Mendeleev Commun. 19, 128 (2009).
- 18. B. Guzelturk, Y. Kelestemur, M. Olutas et al., Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets, ACS Nano 8, 6599 (2014).
- 19. N. E. Watkins, J. Guan, B. T. Diroll et al., Surface Normal Lasing from CdSe Nanoplatelets Coupled to Aluminum Plasmonic Nanoparticle Lattices,J. Phys. Chem. C 125, 19874 (2021).
- 20. Y. Wang, V. D. Ta, Y. Gao et al., Stimulated Emission and Lasing from CdSe/CdS/ZnS CoreMulti-Shell Quantum Dots by Simultaneous ThreePhoton Absorption, Adv. Mat. 26, 2954 (2014).
- 21. S. Dayal and C. Burda, Surface Effects on Quantum Dot-Based Energy Transfer, J. Am. Chem. Soc. 129, 7977 (2007).
- 22. S. F. Wuister, A. van Houselt, C. de Mello Donega et al., Temperature Antiquenching of the Luminescence from Capped CdSe Quantum Dots, Angew. Chem. Int. Ed. 43, 3029 (2004).
- 23. P. A. Frantsuzov and R. A. Marcus, Explanation of Quantum Dot Blinking without the Long-Lived Trap Hypothesis, Phys. Rev. B 72, 155321 (2005).
- 24. A. Katsaba, V. Fedyanin, S. Ambrozevich et al., Characterization of Defects in Colloidal CdSe Nanocrystals by the Modified Thermostimulated Luminescence Technique, Semiconductors 47, 1328 (2013).
- 25. M. S. Zabolotskii, A. V. Katsaba, S. A. Ambrozevich et al., Reversible and Irreversible Degradation of CdS/ZnSe Nanocrystals Capped with Oleic Acid, Phys. St. Sol. (RRL)–Rapid Res. Lett. 14, 2000167 (2020).
- 26. A. V. Katsaba, S. A. Ambrozevich, V. V. Fedyanin et al., Effect of Auger Recombination in Ensemble of CdSe Nanocrystals on their Luminescence,J. Luminescence 214, 116601 (2019).
- 27. M. A. Hines and P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnSCapped CdSe Nanocrystals, J. Phys. Chem. 100, 468 (1996).
- 28. S. Kumar, M. Jones, S. S. Lo et al., Nanorod Heterostructures Showing Photoinduced Charge Separation, Small 3, 1633 (2007).
- 29. A. Vitukhnovsky, A. Shul’ga, S. Ambrozevich et al., Effect of Branching of Tetrapod-Shaped CdTe/CdSe Nanocrystal Heterostructures on their Luminescence, Phys. Lett. A 373, 2287 (2009).
- 30. M. D. Tessier, C. Javaux, I. Maksimovic et al., Spectroscopy of Single CdSe Nanoplatelets, ACS Nano 6, 6751 (2012).
- 31. P. M. Allen and M. G. Bawendi, Ternary I-III-IV Quantum Dots Luminescent in the Red to NearInfrared, J. Am. Chem. Soc. 130, 9240 (2008).
- 32. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Theory of Transient Excitonic Optical Nonlinearities in Semiconductor Quantum-Well Structures, Phys. Rev. B 32, 6601 (1985).
- 33. A. W. Achtstein, A. Schliwa, A. Prudnikau et al., Electronic Structure and Exciton-Phonon Interaction in Two-Dimensional Colloidal CdSe Nanosheets, Nano Lett. 12, 3151 (2012).
- 34. E. V. Shornikova, L. Biadala, D. R. Yakovlev et al., Addressing the Exciton Fine Structure in Colloidal Nanocrystals: the Case of CdSe Nanoplatelets, Nanoscale 10, 646 (2018).
- 35. J. Grim, S. Christodoulou, F. Di Stasio et al., Continious-Wave Biexciton Lasing at Room Temperature Using Solution-Processed Quantum Wells, Nature Nanotechnol. 9, 891 (2014).
- 36. А. М. Смирнов, А. Д. Голинская, К. В. Ежова и др., Особенности нелинейного поглощения коллоидных растворов квантовых точек CdSe/ZnS при стационарном однофотонном возбуждении экситонов, ЖЭТФ 152, 1046 (2017).
- 37. O. Svelto, Principles of Lasers, Springer New, York (2010), Vol. 620.
- 38. A. M. Smirnov, A. D. Golinskaya, V. N. Mantsevich et al., Optical Gain Appearance in the CdSe/CdS Nanoplatelets Colloidal Solution, Results Phys. 32, 105120 (2022).
- 39. B. M. Saidzhonov, V. B. Zaytsev, R. B. Vasiliev, Effect of PMMA Polymer Matrix on Optical Properties of CdSe Nanoplatelets, J. Luminescence 237, 1118175 (2021).