RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

WIGNER CRYSTALLIZATION IN TWO-DIMENSIONAL STRUCTURES IN MAGNETIC FIELD. ACOUSTIC STUDIES

PII
10.31857/S0044451024120101-1
DOI
10.31857/S0044451024120101
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 6
Pages
868-877
Abstract
A review of studies on Wigner crystallization in two-dimensional structures using acoustic methods is presented. These methods allowed determining the frequency dependencies of the real σ1 and imaginary σ2 components of high-frequency conductivity σhf = σ1 – iσ2. Charge carrier crystallization was observed at low temperatures T < 0.3K in strong magnetic fields near filling factors v ≤ 2. The frequency dependencies of real σ1 and imaginary σ2 conductivity components make it possible to establish the formation of Wigner crystal domains in structures, calculate their average sizes, and determine the melting temperature.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. E.P. Wigner, Phys. Rev. 46, 1002 (1934).
  2. 2. А. В. Чаплик, ЖЭТФ 62, 746 (1972).
  3. 3. Ю. Е. Лозовик, В. И. Юдсон, Письма в ЖЭТФ 22, 26 (1975).
  4. 4. C. C. Grimes, and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
  5. 5. M. Shayegan, Nature Rev. Phys. 4, 212 (2022).
  6. 6. M. Shayegan, Flatland Electrons in High Magnetic Fields, Vol. 3 of High Magnetic Fields: Science and Technology, World Scientific Co, Singapore (2006), p. 31.
  7. 7. V. M. Pudalov, Phys. Quantum Electrons Solid (international, Cambridge, MA (1994) p. 124.
  8. 8. M. A. Paalanen, R. L. Willet, P. B. Littlewood et al., Phys. Rev. 45, 11342 (1992); M. A. Paalanen, R. L. Willet, R. R. Ruel et al., Phys. Rev. B 45, 13784 (1992).
  9. 9. Yong P. Chen, Quantum Solids of Two Dimensional Electrons in Magnetic Fields, PhD Thesis, Princeton University (2005), p. 215
  10. 10. L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1977).
  11. 11. B. G. A. Normand, P. B. Littlewood, and A. J. Millis, Phys. Rev. B 46, 3920 (1992).
  12. 12. H. Fukuyama, and P. A. Lee, Phys. Rev. B 17, 535 (1978).
  13. 13. P. D. Ye, L. W. Engel, D. C. Tsui et al., Phys. Rev. Lett. 89, 176802 (2002).
  14. 14. M. M. Fogler and D. A. Huse, Phys. Rev. B 62, 7553 (2000).
  15. 15. I. L. Drichko, A. M. Diakonov, I. Y. Smirnov et al., Phys. Rev. B 62, 7470 (2000).
  16. 16. I. L. Drichko, I. Yu. Smirnov, A. V. Suslov et al., Phys. Rev. B 94, 075420 (2016).
  17. 17. I. L. Drichko, I. Yu. Smirnov, A. V. Suslov et al., Solid State Commun. 213—214, 46 (2015).
  18. 18. H. Deng, L.N. Pfeiffer, K.W. West et al., Phys. Rev. Lett. 122, 116601 (2019).
  19. 19. I. L. Drichko, I. Yu. Smirnov, A. V. Suslov et al., Phys. Rev. B 92, 205313 (2015).
  20. 20. I. L. Drichko, I. Yu. Smirnov, A. V. Suslov et al., Phys. Rev. B 107, 085301 (2023).
  21. 21. В.М. Пудалов, Письма в ЖЭТФ 116, 456 (2022).
  22. 22. I. L. Drichko, A. M. Dyakonov, I. Yu. Smirnov et al., Phys. Rev. B 77, 085327 (2008).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library