RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

DISINTEGRATION DYNAMICS OF A WATER MOLECULE IN AN INTENSE HIGH-FREQUENCY FIELD

PII
10.31857/S0044451024120010-1
DOI
10.31857/S0044451024120010
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 6
Pages
759-770
Abstract
As result of the development of sources of intense high-frequency radiation and the improvement of techniques for detecting charged fragments, experiments on multiple ionization of inner molecular shells with the momen- tum and charges of fragmentation products being registered in coincidence have become possible. In this paper, the dynamics of the disintegration of water molecule fragments resulting from interaction with intense X-ray radiation has been studied. The charge distribution of oxygen ions was calculated, Newton diagrams were con-structed for fragments — protons and the oxygen ion — at various charge states of the latter, and the kinetic energy release was determined. Calculations were performed using the original code [1] for parameters close to the experiment [2] conducted on EuXFEL in 2021.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. A. Artemyev, A. Bibikov, V. Zayets, and I. Bodrenko, J. Chem. Phys. 123, 024103, (2005).
  2. 2. T. Jahnke et al. Phys. Rev. X 11, 041044 (2021).
  3. 3. B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000).
  4. 4. B. C. Garrett et al., Chem. Rev. 105, 355 (2005).
  5. 5. R. W. Carlson et al., Science 283, 2062 (1999).
  6. 6. M. Blanc, D. J. Andrews, A. J. Coates, D. C. Hamilton, C. M. Jackman, X. Jia, A. Kotova, M. Morooka, H. T. Smith, and J. H. Westlake, Space Sci. Rev. 192, 237 (2015).
  7. 7. I. G. Draganic, Radiat. Phys. Chem. 72, 181 (2005).
  8. 8. S. Serkez, G. Geloni, S. Tomin, G. Feng, E. V. Gryzlova, A. N. Grum-Grzhimailo, and M. Meyer, J. Opt. 20, 024005 (2018).
  9. 9. E. V. Gryzlova, M. D. Kiselev, M. M. Popova, and A. N. Grum-Grzhimailo, Phys. Rev. A 107, 013111 (2023).
  10. 10. F. Braube, Phys. Rev. A 97, 043429 (2018).
  11. 11. A. Sankari, C. Str˚ahlman, R. Sankari, L. Partanen, J. Laksman, J. A. Kettunen, I. F. Galvin, R. Lindh, P.-˚A. Malmqvist, and S. L. Sorensen, J. Chem. Phys. 152, 074302 (2020).
  12. 12. H. Siegbahn, L. Asplund, and P. Kelfve, Chem. Phys. Lett. 35, 330 (1975).
  13. 13. H. ˚Agren and O. Vahtras, J. Phys. B 26, 913 (1993).
  14. 14. A. Moddeman, J. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971).
  15. 15. S. W. J. Scully, Phys. Rev. A 73, 040701R (2006).
  16. 16. Z. L. Streeter, F. L. Yip, R. R. Lucchese, B. Gervais, T. N. Rescigno, and C.W. McCurdy, Phys. Rev. A 98, 053429 (2018).
  17. 17. D. Reedy et al., Phys. Rev. A 98, 053430 (2018).
  18. 18. P. Wang, T. X. Carroll, T. D. Thomas, L. J. Søthre, K. J. Børve, J. Electron Spectros. Relat. Phenomena 251, 147103 (2021).
  19. 19. L. S. Cederbaum, F. Tarantelli, A. Sgamellotti, and J. Schirmer, J. Chem. Phys. 85, 6513 (1986).
  20. 20. M. N. Piancastelli, Eur. Phys. J. Special Topics 222, 2035 (2013).
  21. 21. L. Inhester, C. F. Burmeister, G. Groenhof, and H. Grubmu¨ller, J. Chem. Phys. 136, 144304 (2012).
  22. 22. R. Dorner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-B¨ocking, Phys. Rep. 330, 95 (2000).
  23. 23. M. N. Piancastelli, A. Hempelmann, F. Heiser, O. Gessner, A. Ru¨del, and U. Becker, Phys. Rev. A 59, 300 (1999).
  24. 24. A. Sankari, C. Str˚ahlman, R. Sankari, L. Partanen, J. Laksman, J. A. Kettunen, I. F. Galv´an, R. Lindh, P.-˚A. Malmqvist, and S. L. Sorensen, J. Chem. Phys. 152, 074302 (2020).
  25. 25. H. Fukuzawa et al., J. Chem. Phys. 150, 174306 (2019).
  26. 26. T. Severt, Z. L. Streeter, W. Iskandar, K. A. Larsen, A. Gatton, D. Trabert, B. Jochim, B. Griffin, E. G. Champenois, M. M. Brister, D. Reedy, D. Call, R. Strom, A. L. Landers, R. D¨orner, J. B. Williams, D. S. Slaughter, R. R. Lucchese, T. Weber, C. W. McCurdy, and I. Ben-Itzhak, Nat. Commun. 13, 5146 (2022).
  27. 27. J. Howard, M. Britton, Z. L. Streeter, C. Cheng, R. Forbes, J. L. Reynolds, F. Allum, G. A. McCracken, I. Gabalski, R. R. Lucchese, C. W. McCurdy, T. Weinacht, and P. H. Bucksbaum, Commun. Chem. 6, 81 (2023).
  28. 28. D. Dill and J. L. Dehmer, J. Chem. Phys. 61, 692 (1974).
  29. 29. L. Moore, M. Lysaght, L. Nikolopoulos, J. Parker, H. van der Hart, and K. Taylor, J. Mod. Opt. 58, 1132 (2011).
  30. 30. R. R. Lucchese, K. Takatsuka, and V. McKoy, Phys. Rep. 131, 147 (1986).
  31. 31. C. Marante, M. Klinker, I. Corral, J. GonzalezVazquez, L. Argenti, and F. Martin, J. Chem. Theory Comput. 13, 499 (2017).
  32. 32. E. V. Tkalya, A. V. Bibikov, and I. V. Bodrenko, Phys. Rev. C 81, 024610, (2010).
  33. 33. E. V. Tkalya, A. V. Avdeenkov, A. V. Bibikov, I. V. Bodrenko, and A. V. Nikolaev, Phys. Rev. C 86, 014608, (2012).
  34. 34. A. V. Bibikov, A. V. Avdeenkov, I. V. Bodrenko, A. V. Nikolaev, and E. V. Tkalya, Phys. Rev. C 88, 034608, (2013).
  35. 35. А. В. Бибиков, Г. Я. Коренман, С. Н. Юдин, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 78(1), 2310602 (2023).
  36. 36. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
  37. 37. K. L. Schuchardt, B. T. Didier, T. Elsethagen et al., J. Chem. Inf. Model. 47, 1045 (2007), doi:10.1021/ci600510j
  38. 38. B. Gervais, E. Giglio, L. Adoui, A. Cassimi, D. Duflot, and M. E. Galassi, J. Chem. Phys. 131, 024302 (2009).
  39. 39. H. B. Pedersen et al., Phys. Rev. A 87, 013402 (2013).
  40. 40. Л. Д. Ландау, Е. М. Лифщиц, Квантовая механика: нерелятивистская теория, Физматлит, Москва (2004).
  41. 41. V. Y. Lunin, A. N. Grum-Grzhimailo, E. V. Gryzlova, D. O. Sinitsyn, T. E. Petrova, N. L. Lunina, N. K. Balabaev, K. B. Tereshkina, A. S. Stepanov, Y. F. Krupyanskii, Acta Cryst. D 71 , 293 (2015).
  42. 42. Kengo Moribayashi, J. Phys. B 41, 085602 (2008).
  43. 43. F. Herman and S. Skillman, Atomic Structure Calculations, Englewood Cliffs: Prentice-Hall Inc. (1963).
  44. 44. J. J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables 32, 1 (1985).
  45. 45. Sang-Kil Son, L. Young, and R. Santra, Phys. Rev. A 83, 033402 (2011).
  46. 46. E. Allaria, R. Appio, L. Badano et al., Nat. Phot. 6, 699 (2012).
  47. 47. P. Finetti et al., J. Opt. 19, 114010 (2017).
  48. 48. C. Buth, R. Beerwerth, R. Obaid, N. Berrah, L. S. Cederbaum, and S. Fritzsche, J. Phys. B 51, 055602 (2018).
  49. 49. https://rscf.ru/en/project/23-62-10026/.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library