RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

LOW-THRESHOLD DECAY OF ORDINARY MICROWAVE IN THE PRESENCE OF LARGE-SCALE COHERENT STRUCTURES IN A RAREFIED PLASMA

PII
10.31857/S0044451024110178-1
DOI
10.31857/S0044451024110178
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 5
Pages
748-754
Abstract
The scenario of low-threshold decay of an ordinary microwave with a frequency corresponding to the second harmonic of electron cyclotron resonance, leading to the excitation of two electron Bernstein waves two- dimensionally localized in a large-scale coherent structure in a rarefied plasma, has been investigated. Using the proposed model, estimates for the threshold of this nonlinear phenomenon were obtained for ASDEX-Upgrade and Wendelstein 7-X facilities, as well as in a model experiment on a linear device.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
67

References

  1. 1. E. Westerhof, S.K. Nielsen, J.W. Oosterbeek et al., Plasma Phys.Control. Fusion 55, 115003 (2013).
  2. 2. S.K. Hansen, S.K. Nielsen, J. Stober et al., Nucl. Fusion 60, 106008 (2020).
  3. 3. A. Tancetti, S.K. Nielsen, J. Rasmussen et al., Nucl. Fusion 62, 074003 (2022).
  4. 4. A. Clod, M.G. Senstius, A.H. Nielsen et al., Phys. Rev. Lett. 132, 135101 (2024).
  5. 5. B. I. Cohen, R.H. Cohen, W.M.C. Nevins, and T.D. Rognlien, Rev.Mod.Phys. 63, 949 (1991).
  6. 6. Е. З. Гусаков, А.Ю. Попов, УФН 190, 396 (2020).
  7. 7. E. Z. Gusakov and A.Yu. Popov, Plasma Phys. Control. Fusion 63, 125017 (2021).
  8. 8. Е. З. Гусаков, А.Ю. Попов, Физика плазмы 49, 740 (2023).
  9. 9. M.Yu. Kantor, A. J.H. Donne, R. Jaspers et al., Plasma Phys.Control. Fusion 51, 055002 (2009).
  10. 10. P.H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Phys.Control. Fusion 47, R35 (2005).
  11. 11. O.D. Gurcan and P.H. Diamond, Phys.Plasmas 11, 572 (2004).
  12. 12. S. I. Krasheninnikov, Phys. Lett.A 283, 368 (2001).
  13. 13. B. Nold, G.D. Conway, T. Happel et al., Plasma Phys.Control. Fusion 52, 065005 (2010).
  14. 14. C. Killer, B. Shanahan, O. Grulke et al., Plasma Phys.Control. Fusion 62, 085003 (2020).
  15. 15. J. Cheng, J.Q. Dong, L.W. Yan et al., Nucl. Fusion 53, 093008 (2013).
  16. 16. A.B. Altukhov, V. I. Arkhipenko, A.D. Gurchenko et al., Europhys. Lett. 126, 15002 (2019).
  17. 17. H. Hohnle, J. Stober, A. Herrmann et al., Nucl. Fusion 51, 083013 (2011).
  18. 18. M. Schubert, B. Plaum, S. Vorbrugg et al., in Proc. 43rd EPS Conf. on Plasma Physics, Leuven, Belgium, 4–8 July (2016), Vol. 40A, P1.026.
  19. 19. T. Klinger, T. Andreeva, S. Bozhenkov et al., Nucl. Fusion 59, 112004 (2019).
  20. 20. K.G. Budden and H.G. Martin, The Ionosphere as a Whispering Gallery, Proc.Roy. Soc. London, Series A.Mathem.Phys. Sci.The Royal Society 265 (1323), 554 (1962).
  21. 21. Дж. Стрэтт (лорд Рэлей), Теория звука, Гостехиздат, Москва (1955).
  22. 22. P. L. Stanwix, M. E. Tobar, P. Wolf et al., Phys. Rev. Lett. 95, 040404 (2005).
  23. 23. R. Mendis and M. Mittleman, Appl.Phys. Lett. 97, 031106 (2010).
  24. 24. D.G. Swanson, Plasma Waves, 2nd ed., CRC Press (2003).
  25. 25. А.Ю. Попов, Физика плазмы 48, 27 (2022).
  26. 26. А. Бернштейн, Л. Фридленд, в сб. Основы физики плазмы, т. 1. под ред. М.Н. Розенблюта и Р. З. Сагдеева, Энергоатомиздат, Москва (1983), с. 393.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library