RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

OSTsILLYaTsII RABI PRI TREKhFOTONNOM LAZERNOM VOZBUZhDENII ODINOChNOGO RIDBERGOVSKOGO ATOMA RUBIDIYa V OPTIChESKOY DIPOL'NOY LOVUShKE

PII
10.31857/S0044451024100109-1
DOI
10.31857/S0044451024100109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 4
Pages
535-547
Abstract
В эксперименте по трехфотонному лазерному возбуждению 5S1/2 → 5P3/2 → 6S1/2 → 37P3/2 одиночного ридберговского атома 87Rb, захваченного в оптическую дипольную ловушку, впервые наблюдались трехфотонные осцилляции населенностей Раби между основным и ридберговским состоянием. Одиночный атом регистрировался оптическим методом по сигналу резонансной флуоресценции на малошумящей sCMOS-видеокамере. Измерялась относительная вероятность атому остаться в ловушке после действия трех синхронизованных возбуждающих лазерных импульсов с длительностями, изменяемыми от 100 нс до 2 мкс. Особенностью эксперимента было использование интенсивного лазерного излучения с длиной волны 1367 нм на второй ступени возбуждения, обеспечивающего однофотонную частоту Раби до 2 ГГц для управления эффективными отстройками промежуточных уровней трехфотонного перехода за счет динамического эффекта Штарка. Зарегистрированы осцилляции Раби с частотой от 1 до 5 МГц в зависимости от интенсивности лазерных импульсов первой и второй ступеней возбуждения при времени когерентности 0.7−0.8 мкс. Обсуждаются пути увеличения времени когерентности и контраста трехфотонных осцилляций Раби для применений в квантовой информатике с ридберговскими атомами.
Keywords
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
126

References

  1. 1. S. J. Evered, D. Bluvstein, M. Kalinowski, et al., Nature 622, 268 (2023).
  2. 2. H. J. Manetsch, G. Nomura, E. Bataille, K.˝. Leung, X. Lv, and M. Endres, arXiv: 2403.12021 (https://arxiv.org/abs/2403.12021).
  3. 3. T. F. Gallagher, Rydberg Atoms, Cambridge University Press, Cambridge (1994).
  4. 4. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
  5. 5. M. Saffman, J. Phys. B 49, 202001 (2016).
  6. 6. L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and C. Jurczak, Quantum 4, 327 (2020).
  7. 7. T. Cubel, B. K. Teo, V. S. Malinovsky, J. R. Guest, A. Reinhard, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. A 72, 023405 (2005).
  8. 8. M. Reetz-Lamour, J. Deiglmayr, T. Amthor, and M. Weidemuller, New J. Phys. 10, 045026 (2008).
  9. 9. T. M. Graham, Y. Song, J. Scott et al., Nature 604, 457 (2022).
  10. 10. P. Thoumany, T. Hansch, G. Stania, L. Urbonas, and Th. Becker, Opt. Lett. 34, 1621 (2009).
  11. 11. V. A. Sautenkov, S. A. Saakyan, A. A. Bobrov, E.V. ˙ Vilshanskaya, B. B. Zelener, and B. V. Zelener, ˙ J. Opt. Soc. Am. B 35, 1546 (2018).
  12. 12. P. Cheinet, K.-L. Pham, P. Pillet, I. I. Beterov, I. N. Ashkarin, D. B. Tretyakov, E. A. Yakshina, V. M. Entin, and I. I. Ryabtsev, Quantum Electronics 50, 213 (2020)].
  13. 13. I. N. Ashkarin, I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, K.-L. Pham, S. Lepoutre, and P. Pillet, Phys. Rev. A 106, 032601 (2022).
  14. 14. I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, Phys. Rev. A 84, 053409 (2011).
  15. 15. V. M. Entin, E. A. Yakshina, D. B. Tretyakov, I. I. Beterov, and I. I. Ryabtsev, JETP 116, 721 (2013)].
  16. 16. E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Beterov, and I. I. Ryabtsev, Quantum Electronics 48, 886 (2018)].
  17. 17. E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Beterov, I. I. Ryabtsev, JETP 130, 170 (2020)].
  18. 18. D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Beterov, and I. I. Ryabtsev, Quantum Electronics 52, 513 (2022)].
  19. 19. I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, N. V. Al’yanova, D. A. Skvortsova, G. Suliman, T. R. Zagirov, V. M. Entin, and I. I. Ryabtsev, JETP 137, 246 (2023)].
  20. 20. G. S. Agarwal, Phys. Rev. Lett. 37, 1383 (1976).
  21. 21. S. M. Bohaichuk, F. Ripka, V. Venu, F. Christaller, C. Liu, M. Schmidt, H. Kobler, and J. P. Shaffer, arXiv: 2304.07409 (https://arxiv.org/abs/2304.07409).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library