RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

EVOLUTION OF PLASMA RADIATION FROM BARRIER DISCHARGE IN LOW-PRESSURE NEON. ATOMIC SPECTRUM

PII
10.31857/S004445102409013X-1
DOI
10.31857/S004445102409013X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 3
Pages
434-441
Abstract
The results of a spectroscopic study of the plasma created by a barrier discharge in low-pressure neon are presented, reflecting the evolution of the mechanisms of population of excited levels of the Ne* atom and Ne+* ion depending on the observation time relative to the beginning of the discharge. Analysis of the emission spectrum, correlated with measurements of the time dependences of the intensities of spectral lines, allows us to indicate four stages of spectrum evolution: direct population by electron impact in the active stage (discharge), followed by a stepwise population at its end with a transition, as the electron temperature relaxes, to recombination afterglow. The latter, depending on the gas pressure and the initial electron density, can also contain two stages – the initial one, with the predominance of the mechanism of collisional-radiative recombination of Ne++ and Ne+ ions with electrons as the source of population of all excited levels of the Ne+* ion and neon atom observed in the experiment, and the final stage, the radiation in which is associated with the population of a limited group of levels due to the dissociative recombination of Ne2+ molecular ions with electrons. The main attention in the work is paid to the population kinetics of the levels of configurations 2p53p and 2p54p of the neon atom.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
58

References

  1. 1. V. A. Ivanov, Plasma Sources Sci. Technol. 29, 045022 (2020); DOI: org/10.1088/1361-6595/ab7f4c.
  2. 2. В. А. Иванов, Опт. и спектр. 130, 996 (2022); DOI: 10.21883/OS.2022.07.52718.3076-21 [V. A. Ivanov, Opt. Spectr. 130, 799 (2022); DOI: 10.21883/EOS.2022.07.54719.3076-21].
  3. 3. В. А. Иванов, Опт. и спектр. 129, 992 (2021); DOI: 10.21883/OS.2021.08.51193.1987-21 [V. A. Ivanov, Opt. Spectr. 129,1104 (2021); DOI: 10.1134/S0030400X21080099].
  4. 4. U. Kogelschatz, Plasma Chem. Plasma Proc. 23, 1 (2003).
  5. 5. V. F. Tarasenko, E. B. Chernov, M. V. Erofeev, M. L. Lomaev, A. N. Panchenko, V. S. Skakun, E. A. Sosnin, and D. V. Shitz, Appl. Phys. A 69, 327 (1999).
  6. 6. В. А. Иванов, Опт. и спектр. 131, 1537 (2023).
  7. 7. В. А. Иванов, Ю. Э. Скобло, ЖЭТФ 106, 1704 (1994).
  8. 8. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 19, 870 (1964).
  9. 9. В. А. Иванов, УФН 162, 35 (1992) [V. A. Ivanov, Usp. Fiz. Nauk 162, 35 (1992)].
  10. 10. L. J. Kieffer, Atomic Data 1, 121 (1969); URL: https://physics.nist.gov/PhysRefData/ASD/lines form.html.
  11. 11. J. E. Chilton, M. D. Stewart, Jr., and Chun C. Lin, Phys. Rev. A 61, 052608 (2000).
  12. 12. А. И. Шишпанов, П. С. Бажин, В. В. Залетов, Сборник материалов Всероссийской конференции, Наука, СПбГУ (2022), с. 421.
  13. 13. J. B. Boffard, M. L. Keeler, G. A. Piech, L. W. Anderson, and C. C. Lin, Phys. Rev. A 64, 032708 (2001); DOI: 10.1103/PhysRevA.64.032708.
  14. 14. S. S. Baghel, S. Guptal, R. K. Gangwar, and R. Srivastava, Plasma Sources Sci. Technol. 28, 115010 (2019).
  15. 15. V. M. Donelly, J. Phys. D: Appl. Phys. 37, R217 (2004); DOI:10.1088/0022-3727/37/19/R01.
  16. 16. NIST Atomic Spectra Database Lines Form [Electronic source], URL: https://physics.nist.gov/PhysRefData/ASD/ lines form.html.
  17. 17. M. Adibzadeh and C. E. Theodosiou, Atom. Data Nucl. Data Tables 91, 8 (2005); DOI:10.1016/j.adt.2005.07.004.
  18. 18. С. В. Гордеев, В. А. Иванов, Ю.Э.Скобло, Опт. и спектр. 127, 396 (2019);
  19. 19. DOI:10.21883/OS.2019.09.48190.106-19 [S. V. Gordeev, V. A. Ivanov, and Yu. E. Skob-lo, Opt. Spectr. 127, 418 (2019); DOI: 10.1134/S0030400X19090133].
  20. 20. A. E. Kramida and G. Nave, Eur. Phys. J. D 39, 331 (2006); DOI: 10.1140/epjd/e2006-00121-4.
  21. 21. F. J. de Hoog and H. J. Oskam, J. Appl. Phys. 44, 3496 (1973).
  22. 22. R. Johnsen and M. A. Biondi, Phys. Rev. A 18, 996 (1978).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library