RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

ELECTRON SPIN POLARIZATION IN TUNNEL CONTACTS CO0.9FE0.1/MgO/InSb

PII
10.31857/S0044451024090074-1
DOI
10.31857/S0044451024090074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 3
Pages
374-382
Abstract
Lateral spin devices with tunnel contacts Co0.9Fe0.1/MgO/InSb were fabricated using magnetron sputtering and maskless photolithography. The current-voltage characteristics and contact resistance, as well as the Hanle effect during the diffusion of polarized electrons between contacts, were measured. First-principles molecular dynamics calculations were performed to determine the band structure in supercells modeling the Co/MgO and MgO/InSb interfaces. It was shown that at the Co/MgO interface, a significant spin polarization arises for Bloch states of electrons. As a result, the probabilities of passing through the dielectric layer and through the ferromagnetic/dielectric and dielectric/semiconductor interfaces are different for these electrons. The height and width of the tunnel barriers were calculated based on an analysis of the current-voltage characteristics of the tunnel contacts. It was shown that a higher degree of polarization is achieved in tunnel contacts with higher barrier heights and higher resistance. It was also shown that at the MgO/InSb interface, due to the large difference in lattice parameters, there is a high likelihood of defect formation, which prevents achieving high polarization characteristics of the tunnel contacts.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
68

References

  1. 1. J. Fabian, A. Matos-Abiague, C. Ertler et al., Acta Phys.Slov. 57, 565 (2007).
  2. 2. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
  3. 3. D.D. Awschalom and M. E. Flatte, Nature Phys. 3, 153 (2007).
  4. 4. H. Dery, P. Dalal, L. Cywinski and L. J. Sham, Nature 447, 5736 (2007).
  5. 5. H. Dery, Y. Song, P. Li, and I. Zutic, Appl. Phys. Lett. 99, 082502 (2011).
  6. 6. A. T. Hanbicki, O. M. J. van’t Erve, R. Magno et al., Appl. Phys. Lett. 82, 4092 (2003).
  7. 7. X. Jiang, R. Wang, R.M. Shelby et al., Phys. Rev. Lett. 94, 056601 (2005).
  8. 8. Н. А. Виглин, В. В. Устинов, В. В. Осипов, Письма в ЖЭТФ 86, 221 (2007).
  9. 9. M. Johnson and R. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
  10. 10. A. Filip, B. H. Hoving, F. Jedema et al., Phys. Rev. B 62, 9996 (2000).
  11. 11. G. Schmidt, D. Ferrand, L. W. Molenkamp et al., Phys. Rev. B 62, 4790 (2000).
  12. 12. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
  13. 13. E. Merzbacher, Quantum Mechanics, Wiley, New York (1997).
  14. 14. Н.А. Виглин, И. В. Грибов, В. М. Цвелиховская, Е. И. Патраков, ФТП 53, 277 (2019).
  15. 15. S. F. Alvorado, Phys. Rev. Lett. 75, 513 (1995).
  16. 16. W. H. Butler, X.-G. Zhang, T. C. Schulthess et al., Phys. Rev. B 63, 054416 (2001).
  17. 17. X.-G. Zhang and W. H. Butler, Phys. Rev. B 70, 172407 (2004).
  18. 18. J. M. MacLaren, X.-G. Zhang, W. H. Butler et al., Phys. Rev. B 59, 5470 (1999).
  19. 19. O. M. J. van’t Erve, A. L. Friedman, E. Cobas et al., Nat. Nanotechnol. 7, 737 (2012).
  20. 20. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).
  21. 21. N. A. Viglin, V. V. Ustinov, S. O. Demokritov et al., Phys. Rev. B 96, 235303 (2017).
  22. 22. Н. А. Виглин, Ю. В. Никулин, В. М. Цвелиховская и др., ЖЭТФ 161, 866 (2022).
  23. 23. J. Bass and W. P. Pratt Jr., J. Phys.: Condens. Matter 19, 183201 (2007).
  24. 24. Н.А. Виглин, В. М. Цвелиховская, Н. А. Кулеш и др., Письма в ЖЭТФ 110, 248 (2019).
  25. 25. J. G. Simmons, J. Appl. Phys. 34, 238 (1963).
  26. 26. B. J. Jonsson-Akerman, R. Escudero, C. Leighton et al., Appl. Phys. Lett. 77, 18 (2000).
  27. 27. P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys.: Cond. Matter 21, 395502 (2009).
  28. 28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996).
  29. 29. V. I. Anisimov, J. Zaanen, and Ole K. Andersen. Phys. Rev. B 44, 943 (1991).
  30. 30. V. I. Anisimov, F Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Cond. Matter 9, 767 (1997).
  31. 31. G. Prandini, A. Marrazzo, I. E. Castelli et al., npj Comp. Mater. 4, 72 (2018).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library