- PII
- 10.31857/S0044451024090074-1
- DOI
- 10.31857/S0044451024090074
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 166 / Issue number 3
- Pages
- 374-382
- Abstract
- Lateral spin devices with tunnel contacts Co0.9Fe0.1/MgO/InSb were fabricated using magnetron sputtering and maskless photolithography. The current-voltage characteristics and contact resistance, as well as the Hanle effect during the diffusion of polarized electrons between contacts, were measured. First-principles molecular dynamics calculations were performed to determine the band structure in supercells modeling the Co/MgO and MgO/InSb interfaces. It was shown that at the Co/MgO interface, a significant spin polarization arises for Bloch states of electrons. As a result, the probabilities of passing through the dielectric layer and through the ferromagnetic/dielectric and dielectric/semiconductor interfaces are different for these electrons. The height and width of the tunnel barriers were calculated based on an analysis of the current-voltage characteristics of the tunnel contacts. It was shown that a higher degree of polarization is achieved in tunnel contacts with higher barrier heights and higher resistance. It was also shown that at the MgO/InSb interface, due to the large difference in lattice parameters, there is a high likelihood of defect formation, which prevents achieving high polarization characteristics of the tunnel contacts.
- Keywords
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 68
References
- 1. J. Fabian, A. Matos-Abiague, C. Ertler et al., Acta Phys.Slov. 57, 565 (2007).
- 2. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
- 3. D.D. Awschalom and M. E. Flatte, Nature Phys. 3, 153 (2007).
- 4. H. Dery, P. Dalal, L. Cywinski and L. J. Sham, Nature 447, 5736 (2007).
- 5. H. Dery, Y. Song, P. Li, and I. Zutic, Appl. Phys. Lett. 99, 082502 (2011).
- 6. A. T. Hanbicki, O. M. J. van’t Erve, R. Magno et al., Appl. Phys. Lett. 82, 4092 (2003).
- 7. X. Jiang, R. Wang, R.M. Shelby et al., Phys. Rev. Lett. 94, 056601 (2005).
- 8. Н. А. Виглин, В. В. Устинов, В. В. Осипов, Письма в ЖЭТФ 86, 221 (2007).
- 9. M. Johnson and R. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
- 10. A. Filip, B. H. Hoving, F. Jedema et al., Phys. Rev. B 62, 9996 (2000).
- 11. G. Schmidt, D. Ferrand, L. W. Molenkamp et al., Phys. Rev. B 62, 4790 (2000).
- 12. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
- 13. E. Merzbacher, Quantum Mechanics, Wiley, New York (1997).
- 14. Н.А. Виглин, И. В. Грибов, В. М. Цвелиховская, Е. И. Патраков, ФТП 53, 277 (2019).
- 15. S. F. Alvorado, Phys. Rev. Lett. 75, 513 (1995).
- 16. W. H. Butler, X.-G. Zhang, T. C. Schulthess et al., Phys. Rev. B 63, 054416 (2001).
- 17. X.-G. Zhang and W. H. Butler, Phys. Rev. B 70, 172407 (2004).
- 18. J. M. MacLaren, X.-G. Zhang, W. H. Butler et al., Phys. Rev. B 59, 5470 (1999).
- 19. O. M. J. van’t Erve, A. L. Friedman, E. Cobas et al., Nat. Nanotechnol. 7, 737 (2012).
- 20. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).
- 21. N. A. Viglin, V. V. Ustinov, S. O. Demokritov et al., Phys. Rev. B 96, 235303 (2017).
- 22. Н. А. Виглин, Ю. В. Никулин, В. М. Цвелиховская и др., ЖЭТФ 161, 866 (2022).
- 23. J. Bass and W. P. Pratt Jr., J. Phys.: Condens. Matter 19, 183201 (2007).
- 24. Н.А. Виглин, В. М. Цвелиховская, Н. А. Кулеш и др., Письма в ЖЭТФ 110, 248 (2019).
- 25. J. G. Simmons, J. Appl. Phys. 34, 238 (1963).
- 26. B. J. Jonsson-Akerman, R. Escudero, C. Leighton et al., Appl. Phys. Lett. 77, 18 (2000).
- 27. P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys.: Cond. Matter 21, 395502 (2009).
- 28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996).
- 29. V. I. Anisimov, J. Zaanen, and Ole K. Andersen. Phys. Rev. B 44, 943 (1991).
- 30. V. I. Anisimov, F Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Cond. Matter 9, 767 (1997).
- 31. G. Prandini, A. Marrazzo, I. E. Castelli et al., npj Comp. Mater. 4, 72 (2018).