RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

THE INFLUENCE OF MAGNETIC FIELD AMPLITUDE ON THE MAGNETIZATION REVERSAL KINETICS OF MAGNETIC NANOPARTICLES

PII
10.31857/S0044451024080091-1
DOI
10.31857/S0044451024080091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 166 / Issue number 2
Pages
238-245
Abstract
The influence of magnetic field amplitude on magnetization reversal kinetics and the magnetic hyperthermia effect produced by a single-domain ferromagnetic particle immobilized in a non-magnetic medium has been theoretically investigated. The calculation results, based on the mathematically regular Kramers theory, show that the dissipation W of alternating magnetic field energy in the particle can increase with field amplitude faster than according to the quadratic law W ∼ H20. This conclusion, at least in principle, explains recent experiments on magnetic hyperthermia in systems of immobilized particles, where the dependence was discovered W ∼Hγ0 , γ > 2.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
69

References

  1. 1. Boczkowska and S.F. Awietjan, Tuning Active Magnetorheological Elastomers for Damping Applications, Materials Science Forum 636–637, 766 (2010).
  2. 2. M.T. Lopez-Lopez, G. Scionti, A.C. Oliveira et al., Generation and Characterization of Novel Magnetic Field-Responsive Biomaterials, PLoS ONE 10, 7 (2015).
  3. 3. B. Sung, M-H. Kim, and L. Abelmann, Magnetic Microgels and Nanogels: Physical Mechanisms and Biomedical Applications, Bioengineering and Translational Medicine 6, 1 (2021).
  4. 4. Imran, A.M. Affandi, M. Alam et al., Advanced Biomedical Applications of Iron Oxide Nanostructures Based Ferrofluids, Nanotechnology 32, 42 (2021).
  5. 5. M. Naghdi, M. Ghovvati, and N. Rabiee, Magnetic Nanocomposites for Biomedical Applications, Advances in colloid and interface science 308, 10277 (2022).
  6. 6. Sharma, A. Jangam, and J. Low Yung Shen, Design of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device, Frontiers in Thermal Engineering 3, 1131262 (2023).
  7. 7. X. Liu, Y. Zhang, Y. Wan et al., Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy, Theranostics 10, 8 (2020).
  8. 8. Wlodarczyk , S. Gorgon, A. Radon et al., Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives, Nanomaterials 12(11), 1807 (2022).
  9. 9. M. Peiravi, H. Eslami, M. Ansari et al., Magnetic hyperthermia: Potentials and limitations, J. Indian Chem. Soc. 99, 1 (2022).
  10. 10. J. Pan, Y. Xu, Q. Wu et al., Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy , J.Amer.Chem. Soc. 143, 21 (2021).
  11. 11. Ahmed, E. Kim, S. Jeon et al., Closed-Loop Temperature-Controlled Magnetic Hyperthermia Therapy With Magnetic Guidance of Superparamagnetic Iron-Oxide Nanoparticles, Advanced Therapeutics 5, 2 (2022).
  12. 12. H. F. Rodrigues, G. Capistrano, and A.F. Bakuzis, In Vivo Magnetic Nanoparticle Hyperthermia: A Review on Preclinical Studies, Low-Field NanoHeaters, Noninvasive Thermometry and Computer Simulations for Treatment Planning, J.Hyperthermia 37, 3 (2020).
  13. 13. V. Vilas-Boas, C. Flix, and E. Begona, Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of in Vitro and in Vivo Studies, Molecules 25(12), 2874 (2020).
  14. 14. Chang, M. Lim, J.A.C.M. Goos et al., Biologically Targeted Magnetic Hyperthermia: Potential and Limitations, Frontiers in Pharmacology 9, 831 (2018).
  15. 15. R.E. Rosensweig, Heating Magnetic Fluid With Alternating Magnetic Field, J.Magn.Magn.Mat. 252, 370 (2002).
  16. 16. Yu.P. Kalmykov, THe Relaxation Time of the Magnetization of Uniaxial Single-Domain Ferromagnetic Particles in the Presence of a Uniform Magnetic Field, J.Appl.Phys. 96, 1138 (2004).
  17. 17. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, Dynamic Magnetic Hysteresis in Single-Domain Particles With Uniaxial Anisotropy, Phys.Rev.B 82, 17 (2010).
  18. 18. A.P. Safronov, A.Yu. Zubarev, A.D. Maximov et al., Specific Loss Power of Epoxy Composites With Embedded Magnetite Particles, Europ.Phys. J. Special Topics 231, 1181 (2022).
  19. 19. S. Dutz, M. Kettering, I. Hilger et al., Magnetic Multicore Nanoparticles for Hyperthermia-Influence of Particle Immobilization in Tumour Tissue on Magnetic Properties, Nanotechnology 22, 26 (2011).
  20. 20. E.A. P?rigo, G. Hemery, O. Sandre et al., Fundamentals and Advances in Magnetic Hyperthermia, Applied Physics Reviews 2, 4 (2015).
  21. 21. S. Odenbach and S. Thurm, Magnetoviscous Effect in Ferofluids, Ferrofluids. Magnetically controllable fluids and their aplications, Springer, Berlin (2002).
  22. 22. М.А. Марценюк, Ю.Л. Райхер, М.И. Шлиомис, ЖЭТФ 65, 834 (1973).
  23. 23. W. F. Brown, Jr., Thermal Fluctuations of a SingleDomain Particle, Amer.Phys. Soc. 130, 5 (1963).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library