RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

COMPARISON OF ELECTRON EMISSION IN LINEARLY AND CIRCULARLY POLARIZED GAUSSIAN FIELDS

PII
10.31857/S0044451024060026-1
DOI
10.31857/S0044451024060026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 6
Pages
767-775
Abstract
A comparative analysis of electromagnetic emission by an electron in Gaussian fields of linear and circular polarization was carried out. For a short laser pulse, local (power in solid angle and power) and integral (energy emitted from the trajectory) characteristics of emission are determined. It is shown that the previously discovered law of growth of the emitted peak angular power in a linearly polarized field also extends to the case of a circularly polarized field with a decrease in the numerical coefficient by a factor of 2 due to a decrease in the field amplitude by a factor of √2. During backscattering in both considered cases of linear and circular polarization, the emission characteristics have a power-law increase with indices 6 (peak power per solid angle) and 4 (power, radiated energy) in terms of the initial electron energy and significantly exceed the values of the radiation characteristics from symmetric trajectories.
Keywords
UV and soft-X-ray generation emitted electromagnetic field radiation reaction force residual electron oscillation energy integral emission energy
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
109

References

  1. 1. A. L. Galkin, V. V. Korobkin, M. Yu. Romanovsky et al., Proc. SPIE 799319-1 (2011), doi:10.1117/12.880751.
  2. 2. A. Baltuka, Th. Udem, M. Uiberacker et al., Nature 421, 611 (2003).
  3. 3. K. Lee, Y. H. Cha, M. S. Shin et al., Phys. Rev. E 6, 026502 (2003).
  4. 4. S. V. Bulanov, T. Zh. Esirkepov, J. Koga et al., Plasma Phys. Rep. 30, 196 (2004).
  5. 5. А. В. Башинов, А. А. Гоносков, А. В. Ким и др., КЭ 43, 291 (2013).
  6. 6. A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 102, 254802 (2009).
  7. 7. А. Л. Галкин, ЖЭТФ 142, 230 (2012).
  8. 8. C. N. Harvey, Phys. Rev. Accel. Beams 21, 114001 (2018).
  9. 9. Ju Gao, Phys. Rev. Lett. 93, 243001 (2004).
  10. 10. П. А. Головинский, Е. А. Михин,ЖЭТФ 140, 627 (2011).
  11. 11. Yifan Chang, Zishuai Cai, Yuting Shen et al., Laser Phys. 32, 035302 (2022).
  12. 12. В. В. Лидский, Краткие сообщения по физике ФИАН 36, 31 (2009).
  13. 13. A. V. Borovskiy and A. L. Galkin, Laser Phys. 32, 084008 (2022).
  14. 14. A. V. Borovskiy and A. L. Galkin, Laser Phys. Lett. 20, 036002 (2023).
  15. 15. B. Quesnel and P. Mora, Phys. Rev. E 58, 3719 (1998).
  16. 16. S. Banerjee, S. Sepke, R. Shah et al., Phys. Rev. Lett. 95, 035004 (2005).
  17. 17. А. V. Borovskiy, A. L. Galkin, andM. P. Kalashnikov, Phys. Plasmas 22, 043107 (2015).
  18. 18. А. В. Боровский, А. Л. Галкин, Избранные задачи лазерной физики. Вакуумное ускорение электронов. Фокусировка параболическим зеркалом. Дифракция на клине, как проблема субволновой физики, Palmarium Acad. Publ., Saarbrucken, Deutschland (2016).
  19. 19. В. С. Попов, В. Д. Мур, Н. Б. Нарожный и др., ЖЭТФ 149, 623 (2016).
  20. 20. N. B. Narozhny and M. S. Fofanov, Phys. Lett. A 295, 87 (2002).
  21. 21. G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. Lett. 78, 3314 (1997).
  22. 22. Qingyu Yang, Yubo Wang, Yifei Cao et al., Laser Phys. Lett. 20, 045301(2023).
  23. 23. А. В. Боровский, А. Л. Галкин, System Analysis and Mathematical Modeling 6 (2) (2024).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library