RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

ON THE IMPACT OF HIGH-ENERGY HELIUM PLASMA ION FLOW ON TUNGSTEN NANOSTRUCTURE

PII
10.31857/S0044451024050134-1
DOI
10.31857/S0044451024050134
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 5
Pages
742-751
Abstract
The processes of plasma formation from helium bubbles-containing tungsten nanofibers when exposed to energy and particle flux from helium plasma under conditions of near-wall potential increased to hundreds of volts, when spontaneous initiation of explosive electron emission bursts is observed, have been considered. It is shown that the development of initiation models under external influence of energy and particle flux requires consideration of nanofibers heterophase structure. Using molecular dynamics method, atomistic modeling of interaction between an incident high-energy helium atom (100-500 eV) with an ensemble of helium atoms in a nanoscale bubble with solid-state of nanofibers heterophase structure 1029 m–3, retained in the near-surface tungsten layer, was performed. The energy relaxation time in the heterophase system of a nanobubble in tungsten was obtained, amounting to several picoseconds. It is shown that at incident particle energies of hundreds of electronvolts, overheating of near-surface nanobubbles is possible, leading to their explosion within times of about 10 ps. Such energy is comparable to the total energy of nanobubble particles, and at such near-wall potential, spontaneous initiations of explosive electron emission bursts are observed.
Keywords
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
105

References

  1. 1. S. Kajita, N. Yoshida, and N. Ohno, Nucl. Mater. Energy 25, 100828 (2020).
  2. 2. J. Wright, Tungsten 4, 184 (2022).
  3. 3. K. D. Hammond, Mater. Res. Express 4, 104002 (2017).
  4. 4. S. Kajita, S. Takamura, and N. Ohno, Nucl. Fusion 49, 032002 (2009).
  5. 5. S. A. Barengolts, G. A. Mesyats, and M. M. Tsventoukh, IEEE Trans. Plasma Sci. 39, 1900 (2011).
  6. 6. D. Hwangbo, S. Kawaguchi, S. Kajita, and N. Ohno, Nucl. Mater. Energy 12, 386 (2017).
  7. 7. S. Kajita, W. Sakaguchi, N. Ohno et al., Nucl. Fusion 49, 095005 (2009).
  8. 8. Y. Martynenko and M. Nagel’, Plasma Phys. Rep. 38, 996 (2012).
  9. 9. M. Baldwin and R. Doerner, Nucl. Fusion 48, 035001 (2008).
  10. 10. S. Krasheninnikov, Phys. Scripta T 145, 014040 (2011).
  11. 11. S. Kajita, N. Yoshida, R. Yoshihara et al., J. Nucl. Mater. 418, 152 (2011). 750
  12. 12. M. Tokitani, S. Kajita, S. Masuzaki et al., Nucl. Fusion 51, 102001 (2011).
  13. 13. S. Kajita, Y. Noiri, and N. Ohno, Phys. Scripta 90, 095604 (2015).
  14. 14. R. Zhang, S. Kajita, D. Hwangbo et al., Nucl. Mater. Energy 31, 101178 (2022).
  15. 15. G. A. Mesyats, J. Nucl. Mater. 618, 128 (1984).
  16. 16. S. A. Barengolts, G. A. Mesyats, and M. M. Tsventoukh, Nucl. Fusion 50, 125004 (2010).
  17. 17. M. M. Tsventoukh, Phys. Plasmas 30, 092511 (2023).
  18. 18. A. Loarte, B. Lipschultz, A. S. Kukushkin et al., Nucl. Fusion 47, S203 (2007).
  19. 19. V. S. Mikhailov, P. Yu. Babenko, A. P. Shergin et al., J. Exp. Theor. Phys. 137, 413 (2023).
  20. 20. С. А. Баренгольц, Г. А. Месяц, М. М. Цвентух, ЖЭТФ 134, 1213 (2008) [S. A. Barengolts, G. A. Mesyats, and M. M. Tsventoukh, JETP 107, 1039 (2008)].
  21. 21. K. H. Lin, S. L. Wang, C. Chen, and S. P. Ju, RSC Advances 4 (46), 24286 (2014).
  22. 22. D. L. Shmelev and S. A. Barengolts, IEEE Trans. Plasma Sci. 41, 1959 (2013), https://doi.org/10.1109/TPS.2013.2245347.
  23. 23. M. M. Tsventoukh, Phys. Plasmas 25, 053504 (2018), https://doi.org/10.1063/1.4999377.
  24. 24. Yu. Gasparyan, V. Efimov, and K. Bystrov, Nucl. Fusion 56, 054002 (2016).
  25. 25. M. M. Tsventoukh, Phys. Plasmas 28, 024501 (2021), https://doi.org/10.1063/5.0034814.
  26. 26. M. M. Tsventoukh, J. Phys. D: Appl. Phys. 55, 355204 (2022), https://doi.org/10.1088/1361-6463/ac77c8.
  27. 27. S. A. Barengolts, D. Hwangbo, S. Kajita et al., Nucl. Fusion 60, 044001 (2020), https://doi.org/10.1088/1741-4326/ab73c3.
  28. 28. D. Nishijima, M. Baldwin, R. Doerner, and J. Yu, J. Nucl. Mater. 415(1), S96 (2011), https://doi.org/10.1016/j.jnucmat.2010.12.017.
  29. 29. D. Ruzic and S. Cohen, J. Chem. Phys. 83, 5527 (1985).
  30. 30. N. R. Lewkow, V. Kharchenko, and P. Zhang, Astrophys. J. 756, 57 (2012).
  31. 31. S. Kajita, N. Yoshida, R. Yoshihara et al., J. Nucl. Mater. 418, 152 (2011).
  32. 32. K. Hammond, S. Blondel, L. Hu et al., Acta Mater. 144, 561 (2018).
  33. 33. K. Hammond, D. Maroudas, and B. Wirth, Sci. Rep. 10, 2192 (2020).
  34. 34. E. A. Lobashev, A. S. Antropov, and V. V. Stegailov, JETP 136, 174 (2023).
  35. 35. A. Thompson, H. Aktulga, R. Berger et al., Comput. Phys. Commun. 271, 108171 (2022).
  36. 36. S. J. Plimpton, Comput. Phys. 117, 1 (1995).
  37. 37. M. Finnis and J. Sinclair, Philos. Mag. A 50, 45 (1984).
  38. 38. M. Finnis and J. Sinclair, Philos. Mag. A 53, 161 (1986).
  39. 39. G. Ackland and R. Thetford, Philos. Mag. A 56, 15 (1987).
  40. 40. N. Juslin and B. Wirth, J. Nucl. Mater. 432, 61 (2013).
  41. 41. D. Beck, Mol. Phys. 14, 311 (1968).
  42. 42. D. Beck, Mol. Phys. 14, 332 (1968).
  43. 43. K. Morishita, R. Sugano, B. Wirth, and T. Diaz de la Rubia, Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 202, 76 (2003).
  44. 44. L. Hu, K. D. Hammond, B. D. Wirth, and D. Maroudas, Surf. Sci. 626, L21 (2014).
  45. 45. S. Blondel, D. E. Bernholdt, K. D. Hammond, and B. D. Wirth, Nucl. Fusion 59, 029501 (2019).
  46. 46. A. Weerasinghe, L. Hun, K. D. Hammond et al., J. Appl. Phys. 128, 165109 (2020).
  47. 47. L. Pentecoste, P. Brault, A.-L. Thomann et al., J. Nucl. Mater. 470, 44 (2016).
  48. 48. L. Pentecoste, A.-L. Thomann, P. Brault et al., Acta Mater. 141, 47 (2017).
  49. 49. F. Ferroni, K. D. Hammond, and B. D. Wirth, J. Nucl. Mater. 458, 419 (2015).
  50. 50. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 268, 1818 (2010).
  51. 51. S. Nos´e, J. Chem. Phys. 81, 511 (1984).
  52. 52. W. Hoover, Phys. Rev. A 31, 1695 (1985).
  53. 53. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).
  54. 54. M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998).
  55. 55. M. Rosenblatt, Ann. Math. Stat. 27, 832 (1956).
  56. 56. E. Parzen, Ann. Math. Stat. 33, 1065 (1962).
  57. 57. W. Setyawan, D. Dasgupta, S. Blondel et al., Sci. Rep. 13, 9601 (2023), https://doi.org/10.1038/s41598-023-35803-3.
  58. 58. Я. Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, Физматгиз, Москва (1963), с. 91.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library