RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

ELECTRODYNAMICS OF PLASMA SOLENOID AND ELECTROMAGNETIC PROPERTIES OF INDUCTIVE DISCHARGE

PII
10.31857/S0044451024050122-1
DOI
10.31857/S0044451024050122
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 5
Pages
725-741
Abstract
The electrodynamic properties of a plasma solenoid with cold collisional magnetoactive plasma and the dynamics of wave excitation by azimuthal current on its surface have been studied at arbitrary ratiosarbitrary ratios between the external current source frequency, electron cyclotron frequency, and plasma frequency. Cases of unbounded and longitudinally bounded plasma solenoids have been considered. Their complex impedances and effective resistances as quantities characterizing the power absorbed in the plasma source have been calculated. It is shown that despite the limitation of the complex impedance concept to the quasi-stationary case, its real part coincides with the effective resistance even beyond the quasistationarity condition. The resonant dependencies of the calculated complex impedances and effective plasma resistances indicate that in the presence of an external magnetic field, resonant excitation of electromagnetic waves by azimuthal current with a significant longitudinal component of the electric field strength is possible in the plasma solenoid at frequencies lower than cyclotron and plasma frequencies.
Keywords
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
116

References

  1. 1. S. Shinohara, Adv. in Phys.: X 3, 1420424 (2018); doi:10.1080/23746149.2017.1420424.
  2. 2. S. Isayama, S. Shinohara, and T. Hada, Plasma and Fusion Research 13, 1101014 (2018); doi:10.1585/pfr.13.1101014.
  3. 3. F. F. Chen, Plasma Sources Sci. Technol. 24, 014001 (2015); doi:10.1088/0963-0252/24/1/014001.
  4. 4. Е. А. Кралькина, УФН 178, 519 (2008); [E. A. Kral’kina, Phys. Usp. 51, 493 (2008); doi:10.1070/PU2008v051n05ABEH006422].
  5. 5. S. Shinohara et al., IEEE Trans. on Plasma Science 42, 1245 (2014).
  6. 6. F. F. Chen, Phys. Plasmas 21, 093511 (2014); doi:10.1063/1.4896238.
  7. 7. F. F. Chen, IEEE Trans. on Plasma Science 43, 195 (2015).
  8. 8. S. Shinohara et al., IEEE Trans. on Plasma Science 46, 252 (2018).
  9. 9. S. Samukawa et al., J. Phys. D: Appl. Phys. 45, 253001 (2012); doi:10.1088/0022-3727/45/25/253001.
  10. 10. В. Л. Вдовин, Физика плазмы 39, 115 (2013) [V.L.Vdovin, Plas. Phys. Rep. 39, 95 (2013); doi:10.1134/S1063780X13020037].
  11. 11. C. Lau et al., Nucl. Fusion 58, 066004 (2018); doi:10.1088/1741-4326/aab96d.
  12. 12. R. W. Boswell, Phys. Lett. A 33, 457 (1970); doi:10.1016/0375-9601(70)90606-7.
  13. 13. R. W. Boswell, Plasma Physics and Controlled Fusion 26, 1147 (1984).
  14. 14. R. W. Boswell, Australian J. Phys. 25, 403 (1972); doi:10.1071/PH720403.
  15. 15. R.W. Boswell, J. Plas. Phys. 31 (2), 197-208 (1984); doi:10.1017/S0022377800001550.
  16. 16. F. F. Chen, Plasma Physics and Controlled Fusion 33, 339 (1991); doi:10.1088/0741-3335/33/4/006.
  17. 17. K. P. Shamrai and V. B. Taranov, Plasma Physics and Controlled Fusion 36, 1719 (1994).
  18. 18. И.Н. Карташов, М.В. Кузелев, ЖЭТФ, 158, 738 (2020) [I. N. Kartashov, M. V. Kuzelev, J. Exp. Theor. Phys. 131, 645 (2020); doi:10.1134/S1063776120090162].
  19. 19. H. Tamura et al., IEEE Trans. on Plasma Science 46, 3662 (2018).
  20. 20. Д. С. Степанов, А. В. Чеботарев, Э. Я. Школьников, ТВТ 57, 347 (2019) [D. S. Stepanov, A. V. Chebotarev, and E. Y. Shkol’nikov, High Temp. 57, 316 (2019); doi:10.1134/S0018151X19030155].
  21. 21. И. Н. Карташов, М. В. Кузелев, ТВТ 56, 346 (2018) [I. N. Kartashov and M. V. Kuzelev, High Temp. 56, 334 (2018); doi:10.1134/S0018151X18030100].
  22. 22. И. Н. Карташов, М. В. Кузелев, ЖЭТФ 156, 355 (2019) [I. N. Kartashov and M. V. Kuzelev, J. Exp. Theor. Phys. 129, 2981 (2019); doi:10.1134/S106377611907015X].
  23. 23. И. С. Абрамов, Е. Д. Господчиков, А. Г. Шалашов, ЖЭТФ 156, 528 (2019) [I. S. Abramov, E. D. Gospodchikov, and A. G. Shalashov, J. Exp. Theor. Phys. 129, 444 (2019); doi:10.1134/S106377611907001X].
  24. 24. E. A. Kralkina et al., AIP Advances 8, 035217 (2018); doi:10.1063/1.5023631.
  25. 25. E. A. Kralkina et al., Plasma Sources Sci. Technol. 26, 055006 (2017); doi:10.1088/1361-6595/aa61e6.
  26. 26. E. A. Kralkina et al., Plasma Sources Sci. Technol. 25, 015016 (2016); doi:10.1088/09630252/25/1/015016.
  27. 27. А. Ф. Александров, М. В. Кузелев, Теоретическая плазменная электротехника, Изд. физического ф-та МГУ, Москва (2011).
  28. 28. В. Л. Гинзбург, А. А. Рухадзе, Волны в магнитоактивной плазме, URSS, Москва (2013).
  29. 29. И. Н. Карташов, М. В. Кузелев, Радиотехника и электроника 68, 1165 (2023) [I. N. Kartashov and M. V. Kuzelev, J. Comm. Tech. Electr. 68, 1394 (2023); doi:10.1134/S1064226923120094].
  30. 30. А. А. Самарский, Ю. П. Попов, Разностные методы решения задач газовой динамики, Наука, Москва (1975).
  31. 31. Д. В. Сивухин, Общий курс физики. Т.3. Электричество, ФИЗМАТЛИТ, Москва (2004).
  32. 32. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, ФИЗМАТЛИТ, Москва (2005).
  33. 33. А. Ф. Александров, Л. С. Богданкевич, А. А. Рухадзе, Основы электродинамики плазмы, Высшая школа, Москва (1988) [A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics, Springer Verlag, Heidelberg (1984)].
  34. 34. А. Н. Тихонов, А. А. Самарский, Уравнения математической физики, Изд. Московского университета, Москва (1999).
  35. 35. М. В. Кузелев, А. А. Рухадзе, П. С. Стрелков, Плазменная релятивистская СВЧ-электроника, ЛЕНАНД, Москва (2018).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library