- PII
- 10.31857/S0044451024050109-1
- DOI
- 10.31857/S0044451024050109
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 5
- Pages
- 710-717
- Abstract
- The quasi-two-dimensional organic metal к-(BEDT-TTF)2Hg(SCN)2Cl transfers to a Mott insulator state when cooled below T = 30 K. External hydrostatic pressure of P > 0.7 kbar restores the metallic state and enables the study of resistance, magnetoresistance, and Shubnikov–de Haas oscillations at helium temperatures in the external pressure range of P = (1-8) kbar. The spectrum of observed Shubnikov–de Haas oscillations agrees well with theoretical calculations of the band structure. At the same time, the oscillation characteristics (cyclotron mass, frequency, amplitude) are significantly influenced by electronic correlations. Strongly correlated systems also exhibit specific temperature dependence of resistance. Pressure serves as the main tool controlling the strength of correlations. Various versions of pressure influence on the behavior of the nonoscillating part of magnetoresistance are discussed.
- Keywords
- Date of publication
- 15.05.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 107
References
- 1. J.M. Williams, J.R. Ferraro, R. J. Thorn et al., Organic Superconductors (Including Fullerenes) Synthesis, Structure, Properties and Theories, Prentice-Hall Inc. (1992).
- 2. H. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, Springer, Berlin (1998).
- 3. N. Hassan, S. Cunningham, M. Mourigal et al., Science 360, 1101 (2018).
- 4. N. Drichko, R. Beyer, E. Rose et al., Phys.Rev.B 89, 075133 (2014).
- 5. N.M. Hassan, K. Thirunavukkuarasu, Z. Lu et al., npj Quant.Mater. 5, 15 (2020).
- 6. A. Lohle, E. Rose, S. Singh et al., J. Phys: Condens. Matter 29, 055601 (2017).
- 7. T. Mori, H. Mori, and S. Tanaka, Bull.Chem. Soc. Jpn 72, 179 (1999).
- 8. M.V. Kartsovnik, Chem.Rev. 104, 5737 (2004).
- 9. Р. Б. Любовский, С. И. Песоцкий, В. Н. Зверев и др., Письма в ЖЭТФ 112, 623 (2020) [R.B. Lyubovskii, S. I. Pesotskii, V.N. Zverev et al., JETP Lett. 112, 582 (2020)].
- 10. A.C. Jacko, E.P. Kenny, and B. J. Powell, Phys. Rev.B 101, 125110 (2020), https://doi.org/10.1103/PhysRevB.101.125110.
- 11. J. Wosnitza, J. Low Temp.Phys. 146, 641 (2007).
- 12. P.D. Grigoriev, Phys.Rev.B 88, 054415 (2013).
- 13. A.A. Abrikosov, Physica C 317-318, 154 (1999).
- 14. M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher et al., Phys.Rev.B 79, 165120 (2009).
- 15. P.D. Grigoriev, Phisica B 407, 1932 (2012).
- 16. Л.С. Левитов, А.В. Шитов, Письма в ЖЭТФ 66, 200 (1997) [L. S. Levitov and A.V. Shytov, JETP Lett. 66, 214 (1997)].
- 17. S.M. Winter, K. Riedl, and R. Valent, Phys.Rev.B 95, 060404(R) (2017).
- 18. J. Merino and R.H. McKenzie, Phys.Rev.B 62, 2416 (2000).
- 19. A. Georges, G. Kotliar, W. Krauth et al., Rev.Mod. Phys. 68, 13 (1996).
- 20. S. Oberbauer, S. Erkenov, W. Biberacher et al., Phys.Rev.B 107, 075139 (2023).
- 21. J. Caulfieldt, W. Lubczynskits, F. L. Prattty et al., J. Phys.: Condens.Matter 6, 2911 (1994).
- 22. D. Shoenberg, Magnetic Oscillations in Metals, Cambridge Univ.Press (1984).
- 23. R.H. McKenzie, arXiv: cond-mat/9802198.