RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

THE INFLUENCE OF EXTERNAL PRESSURE ON THE BEHAVIOR OF THE METALLIC PHASE IN ORGANIC QUASI-TWO-DIMENSIONAL CONDUCTOR к-(BEDT - TTF)2Hg(SCN)2Cl. CONTRIBUTION OF CORRELATION EFFECTS

PII
10.31857/S0044451024050109-1
DOI
10.31857/S0044451024050109
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 5
Pages
710-717
Abstract
The quasi-two-dimensional organic metal к-(BEDT-TTF)2Hg(SCN)2Cl transfers to a Mott insulator state when cooled below T = 30 K. External hydrostatic pressure of P > 0.7 kbar restores the metallic state and enables the study of resistance, magnetoresistance, and Shubnikov–de Haas oscillations at helium temperatures in the external pressure range of P = (1-8) kbar. The spectrum of observed Shubnikov–de Haas oscillations agrees well with theoretical calculations of the band structure. At the same time, the oscillation characteristics (cyclotron mass, frequency, amplitude) are significantly influenced by electronic correlations. Strongly correlated systems also exhibit specific temperature dependence of resistance. Pressure serves as the main tool controlling the strength of correlations. Various versions of pressure influence on the behavior of the nonoscillating part of magnetoresistance are discussed.
Keywords
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
107

References

  1. 1. J.M. Williams, J.R. Ferraro, R. J. Thorn et al., Organic Superconductors (Including Fullerenes) Synthesis, Structure, Properties and Theories, Prentice-Hall Inc. (1992).
  2. 2. H. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, Springer, Berlin (1998).
  3. 3. N. Hassan, S. Cunningham, M. Mourigal et al., Science 360, 1101 (2018).
  4. 4. N. Drichko, R. Beyer, E. Rose et al., Phys.Rev.B 89, 075133 (2014).
  5. 5. N.M. Hassan, K. Thirunavukkuarasu, Z. Lu et al., npj Quant.Mater. 5, 15 (2020).
  6. 6. A. Lohle, E. Rose, S. Singh et al., J. Phys: Condens. Matter 29, 055601 (2017).
  7. 7. T. Mori, H. Mori, and S. Tanaka, Bull.Chem. Soc. Jpn 72, 179 (1999).
  8. 8. M.V. Kartsovnik, Chem.Rev. 104, 5737 (2004).
  9. 9. Р. Б. Любовский, С. И. Песоцкий, В. Н. Зверев и др., Письма в ЖЭТФ 112, 623 (2020) [R.B. Lyubovskii, S. I. Pesotskii, V.N. Zverev et al., JETP Lett. 112, 582 (2020)].
  10. 10. A.C. Jacko, E.P. Kenny, and B. J. Powell, Phys. Rev.B 101, 125110 (2020), https://doi.org/10.1103/PhysRevB.101.125110.
  11. 11. J. Wosnitza, J. Low Temp.Phys. 146, 641 (2007).
  12. 12. P.D. Grigoriev, Phys.Rev.B 88, 054415 (2013).
  13. 13. A.A. Abrikosov, Physica C 317-318, 154 (1999).
  14. 14. M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher et al., Phys.Rev.B 79, 165120 (2009).
  15. 15. P.D. Grigoriev, Phisica B 407, 1932 (2012).
  16. 16. Л.С. Левитов, А.В. Шитов, Письма в ЖЭТФ 66, 200 (1997) [L. S. Levitov and A.V. Shytov, JETP Lett. 66, 214 (1997)].
  17. 17. S.M. Winter, K. Riedl, and R. Valent, Phys.Rev.B 95, 060404(R) (2017).
  18. 18. J. Merino and R.H. McKenzie, Phys.Rev.B 62, 2416 (2000).
  19. 19. A. Georges, G. Kotliar, W. Krauth et al., Rev.Mod. Phys. 68, 13 (1996).
  20. 20. S. Oberbauer, S. Erkenov, W. Biberacher et al., Phys.Rev.B 107, 075139 (2023).
  21. 21. J. Caulfieldt, W. Lubczynskits, F. L. Prattty et al., J. Phys.: Condens.Matter 6, 2911 (1994).
  22. 22. D. Shoenberg, Magnetic Oscillations in Metals, Cambridge Univ.Press (1984).
  23. 23. R.H. McKenzie, arXiv: cond-mat/9802198.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library