RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

INFLUENCE OF A UNIFORM ELECTRIC FIELD ON VORTEX-LIKE MAGNETIC STRUCTURES IN PERFORATED FILMS

PII
10.31857/S0044451024050079-1
DOI
10.31857/S0044451024050079
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 5
Pages
673-684
Abstract
The manifestations of the flexomagnetoelectric effect in thin ferromagnetic films with uniaxial easy-plane anisotropy and artificially created perforations in the presence of an external electric field normal to the film plane are investigated. It is shown that the influence of inhomogeneous magnetoelectric interaction in this case leads to the transformation of magnetic structures, which is necessarily accompanied by the deviation of the magnetization vector from the sample plane. For cases where the deviation angles are small, explicit expressions describing the magnetization distribution are obtained. It is proven that the impact of an electric field of certain strength can lead to changes in the topology of the ground state of the system. A simplified model is considered, explaining the features of changes in structures of this type, as well as allowing to establish conditions for their implementation.
Keywords
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
111

References

  1. 1. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).
  2. 2. T. Shinjo, T. Okuno, R. Hassdorf et al., Science 289, 930 (2000).
  3. 3. K. Y. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008).
  4. 4. S. Mu¨hlbauer, B. Binz, F. Jonietz et al., Science 323, 915 (2009).
  5. 5. A. N. Bogdanov and C. Panagopoulos, Nat. Rev. Phys. 2, 492 (2020).
  6. 6. K. Everschor-Sitte, J. Masell, R. M. Reeve et al., J. Appl. Phys. 124(24), 240901 (2018).
  7. 7. А. С. Самардак, А. Г. Колесников, А. В. Давыденко и др., ФММ 121, 260 (2022).
  8. 8. K. Raab, M. A. Brems, G. Beneke et al., Nat. Commun. 13, 6982 (2022).
  9. 9. D. Navas, R. V. Verba, A. Hierro-Rodriguez et al., APL Mater. 7, 0811114 (2019).
  10. 10. L. Liu, C.-T. Chen and J. Z. Sun, Nat. Phys. 10, 561 (2014).
  11. 11. F. Jonietz, S. Mu¨hlbauer, C. Pfleiderer et al., Science 330, 1648 (2010).
  12. 12. A. Sparavigna, A. Strigazzi and A. Zvezdin, Phys. Rev. B. 50, 2953 (1994).
  13. 13. I. Dzyaloshinskii, Europhys. Lett. 83, 67001 (2008).
  14. 14. A. S. Logginov, G. A. Meshkov, A. V. Nikolaev et al., Appl. Phys. Lett. 93, 182510 (2008).
  15. 15. А. П. Пятаков, А. К. Звездин, УФН 182, 593 (2012)
  16. 16. Р. М. Вахитов, З. В. Гареева, Р. В. Солонецкий и др., ФТТ 61, 1120 (2019).
  17. 17. А. Ф. Кабыченков, Ф. В. Лисовский, Е. Г. Мансветова, Письма в ЖЭТФ 97, 304 (2013).
  18. 18. Г. В. Арзамасцева, А. М. Балбашов, Ф. В. Лисовский и др., ЖЭТФ 147, 793 (2015).
  19. 19. Д. П. Куликова, А. П. Пятаков, Е. П. Николаева и др., Письма в ЖЭТФ 104, 196 (2016).
  20. 20. E. B. Magadeev and R. M. Vakhitov, J. Magn. Magn. Mater. 587, 171230 (2023).
  21. 21. Е. Б. Магадеев, Р. М. Вахитов, Письма в ЖЭТФ 115, 123 (2022).
  22. 22. Е. Б. Магадеев, Р. М. Вахитов, Р. Р. Канбеков, ЖЭТФ 162, 417 (2022).
  23. 23. Е. Б. Магадеев, Р. М. Вахитов, Р. Р. Канбеков, ЖЭТФ 163, 78 (2023).
  24. 24. К. Л. Метлов, Письма в ЖЭТФ 118, 95 (2023).
  25. 25. E. Magadeev, R. Vakhitov, I. Sharafullin, Entropy 24, 1104 (2022).
  26. 26. P. I. Karpov and S. I. Mukhin, Phys. Rev. B 95, 195136 (2017).
  27. 27. A. Hubert and R. Shafer, Magnetic Domains, Springer-Verlag, Berlin (2007).
  28. 28. E. B. Magadeev, R. M. Vakhitov, and R. R. Kanbekov, Europhys. Lett. 142, 26001 (2023).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library