RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

COHERENT STATES IN THERMAL QUANTUM TRANSPORT

PII
10.31857/S0044451024050031-1
DOI
10.31857/S0044451024050031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 5
Pages
627-646
Abstract
This paper focuses on describing energy transfer by coherent thermal excitations in dielectrics, metamaterials, and nanoscale systems. Using the second quantization technique, a general formalism of thermal conductivity is proposed, considering both the model of free phonons in heat transfer and the formation of coherent Schrödinger states of the oscillator system. A general form of the time-dependent problem solution with arbitrary initial conditions is obtained. An exact solution is analytically derived for the heat flux carried by coherent phonons created by an electronic wave packet produced by a laser pulse effecting a nanomaterial. The obtained exact form of solution in quadratures provides a basis for quantitative description of coherent phonons with various initial conditions, as well as taking into account thermal distributions, which allows for evaluation of thermal properties of nanocrystals. It is shown that under certain ratios of constants characterizing the interaction of phonons with the electronic subsystem, a time-independent heat flux can be established in the crystal.
Keywords
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
110

References

  1. 1. Suixuan Li, Zihao Qin, Huan Wu, Man Li, M. Kunz, A. Alatas, A. Kavner, and Yongjie Hu, Anomalous Thermal Transport under High Pressure in Boron Arsenide, Nature, www.nature.comhttps:// doi.org/10.1038/s41586-022-05381-x.
  2. 2. S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 125, 040604 (2020).
  3. 3. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Теоретическая физика, том 5, Наука, Физматлит, Москва (1964).
  4. 4. Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика. Теория конденсированного состояния, Теоретическая физика, том 9, Наука, Физматлит, Москва (1978).
  5. 5. А. В. Юлин, А. В. Пошакинский , А. Н. Поддубный, ЖЭТФ 161, 206 (2022), doi: 10.31857/S0044451022020067.
  6. 6. P. Cipriani, S. Denisov, and A. Politi, Phys. Rev. Lett. 94, 244301 (2005).
  7. 7. C. B. Mendland H. Spohn, Phys. Rev. Lett. 111, 230601 (2013).
  8. 8. A. Dhar, A. Kundu, and A. Kundu, Front. Phys. 7, 159 (2019).
  9. 9. H. Spohn, J. Stat. Phys. 124, 1041 (2006).
  10. 10. A. Mielke, Arch. Ration. Mech. Anal. 181, 401 (2006).
  11. 11. M. Simoncelli, N. Marzari, and F. Mauri, Nat. Phys. 15, 809 (2019).
  12. 12. L. Isaeva, G. Barbalinardo, D. Donadio, and S. Baroni, Nat. Commun. 10, 3853 (2019).
  13. 13. Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Phys. Rev. B 103, 184307 (2021).
  14. 14. S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, J. Phys. Chem. Lett. 9, 3959 (2018).
  15. 15. M. F¨orst, H. Kurz, T. Dekorsy, and R. P. Leavitt, Phys. Rev. B 67, 8, 085305 (2003).
  16. 16. P. Delsing, A. N. Cleland, M. J. A. Schuetz et al., J. Phys. D 52, 353001 (2019).
  17. 17. S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, J. Phys. Chem. Lett. 9, 3959 (2018).
  18. 18. L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Rev. Lett. 111, 25901 (2013).
  19. 19. J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Science 361, 575 (2018).
  20. 20. S. Li et al., Science 361, 579 (2018).
  21. 21. F. Tian et al., Science 361, 582 (2018).
  22. 22. J. S. Kang et al., Nat. Electron 4, 416 (2021).
  23. 23. Y. Cui, Z. Qin, H. Wu, M. Li, and Y. Hu, Nat. Commun. 12, 1284 (2021).
  24. 24. А. Анималу, Квантовая теория кристаллических твердых тел, Мир, Москва (1981), (Alexander O. E. Animalu, Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1977).
  25. 25. А. Н. Базь, Я. Б. Зельдович, А. М. Переломов, Рассеяние, реакции и распады в нерелятивистской квантовой механике, Наука, Физматлит, Москва (1971).
  26. 26. E. V. Orlenko and V. K. Khersonsky, Emission and Absorption of Photons in Quantum Transitions. Coherent States, in: Quantum Science: The Frontier of Physics and Chemistry, ed. by T. Onishi, Springer, Singapore (2022), p. 349, https://doi.org/10.1007/978-981-19-4421-5_6.
  27. 27. R. Berman, F. E. Simon, and J. Wilks, Nature 42se, 277 (1951).
  28. 28. S. Hunsche, K. Wieneke, T. Dekorst, and H. Kurz, Phys. Rev. Lett. 75, 1815 (1995).
  29. 29. T. Dekorsy, G.C. Cho, and H. Kurz, Coherent Phonons in Condensed Media, in: Light Scattering in Solids VIII. Topics in Applied Physics, ed. by M. Cardona and G. Gu¨ntherodt, Vol 76, Springer, Berlin, Heidelberg (2000), https://doi.org/10.1007/BFb0084242.
  30. 30. J. Lukkarinen, Kinetic Theory of Phonons in Weakly Anharmonic Particle Chains, Springer (2016), p. 159.
  31. 31. M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, and Z. Ren, Science 338, 936 (2012). P. B. Rossen, A. Soukiassian, S. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, and Y. Zhu, Nat. Mater. 13, 168 (2014).
  32. 32. Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Heat Conduction Theory Including Phonon Coherence, APL Mater. 9, 081102 (2021).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library