RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

STUDY OF THE CORRELATION BETWEEN THE TOPOLOGICAL PHASE TRANSITION, AXION-LIKE STATE AND MAGNETOELECTRIC EFFECT IN ANTIFERROMAGNETIC TOPOLOGICAL INSULATOR MnBi2Te4

PII
10.31857/S0044451024040096-1
DOI
10.31857/S0044451024040096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 4
Pages
544-557
Abstract
Density functional theory calculations have been performed to demonstrate the possibility of implementing a topological phase transition (TPT) from topological to trivial state and the connection of this transition with the formation of an axion-like state in an antiferromagnetic topological insulator MnBi2Te4 through analysis of changes in the electronic and spin structures of topological surface states (TSS) and the energy gap value at the Dirac point (DP) when varying the strength of spin-orbit interaction. The analysis showed that this TPT corresponds to the minimum of the energy gap opened at the DP and is characterized by the p+-states of Bi and p--states of Te inversion of with different parity at the edges of the formed energy gap, which corresponds to the sign change of the energy gap in the TPT region between topological and trivial phases. At the transition point, there is an inversion of out-of-plane spin polarization for the states of the lower and upper parts of the Dirac cone and spatial redistribution of states forming TSS between the surface and bulk. The TPT occurs without complete closure of the energy gap with a “jump” through zero and formation of a non-zero energy gap value, which we associate with the formation of an axion-like state caused by the non-trivial interrelation of non-magnetic (spin-orbit) and magnetic interactions at the boundary between topological and trivial phases for a system with parameters close to TPT. A comprehensive representation of such intercoupling in the TPT region is proposed, where the axion term changes between quantized values π and 0, characteristic for topological and trivial phases, leading to their intercoupling in the TPT region and determining the non-zero energy gap at the DP. Application of an electric field perpendicular to the surface of the system in the TPT state leads to changes in electronic and spin structures and transition from topological to trivial state of the system and vice versa when changing the direction of the applied field, demonstrating the possibility of implementing the topological magnetoelectric effect in the TPT region.
Keywords
magnetic topological insulator topological phase transition density functional theory axion-like state topological surface state
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
35

References

  1. 1. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).
  2. 2. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  3. 3. D. M. Nenno, C. A. C. Garcia, J. Gooth et al., Nature Rev. Phys. 2, 682 (2020).
  4. 4. A. Sekine and K. Nomura, J. Appl. Phys. 129, 141101 (2021).
  5. 5. C.-Z. Chang, C.-X. Liu, and A. H. MacDonald, Rev. Mod. Phys. 95, 011002 (2023).
  6. 6. A. Essin, J. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009).
  7. 7. Y. Zhao and Q. Liu, Appl. Phys. Lett. 119, 060502 (2021).
  8. 8. R. Li, J. Wang, X.-L. Qi et al., Nature Phys. 6, 284 (2010).
  9. 9. Y. Xiao, H. Wang, D. Wang et al., Phys. Rev. B 104, 115147 (2021).
  10. 10. T. Zhu, H. Wang, H. Zhang et al., npj Comput. Mat. 7, 121 (2021).
  11. 11. H. Wang, D. Wang, Z. Yang et al., Phys. Rev. B 101, 081109 (2020).
  12. 12. J. Zhang, D. Wang, M. Shi et al., Chinese Phys. Lett. 37, 077304 (2020).
  13. 13. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
  14. 14. F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987).
  15. 15. N.V. Mikheev and L.A. Vassilevskaya, Phys. Lett. B 410, 203 (1997).
  16. 16. J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. B 120, 127 (1983).
  17. 17. L. D. Duffy and K. van Bibber, New J. Phys. 11, 105008 (2009).
  18. 18. F. Chadha-Day, J. Ellis, and D. J. E. Marsh, Sci. Adv. 8, eabj3618 (2022).
  19. 19. J. Wang, B. Lian, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 92, 081107 (2015).
  20. 20. T. Morimoto, A. Furusaki, and N. Nagaosa, Phys. Rev. B 92, 085113 (2015).
  21. 21. M. Mogi, M. Kawamura, R. Yoshimi et al., Nature Mater. 16, 516 (2017).
  22. 22. M. Mogi, M. Kawamura, A. Tsukazaki et al., Sci. Adv. 3, eaao1669 (2017).
  23. 23. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann et al., Nature 576, 416 (2019).
  24. 24. Z. S. Aliev, I. R. Amiraslanov, D. I. Nasonova et al., J. Alloys Comp. 789, 443 (2019).
  25. 25. J. Li, Y. Li, S. Du et al., Sci. Adv. 5, eaaw5685 (2019).
  26. 26. D. Zhang, M. Shi, T. Zhu et al., Phys. Rev. Lett. 122, 206401 (2019).
  27. 27. Y. Gong, J. Guo, J. Li et al., Chin. Phys. Lett. 36, 076801 (2019).
  28. 28. D. A. Estyunin, I. I. Klimovskikh, A. M. Shikin et al., APL Mater. 8, 021105 (2020).
  29. 29. A. M. Shikin, D. A. Estyunin, N. L. Zaitsev et al., Phys. Rev. B 104, 115168 (2021).
  30. 30. A. M. Shikin, D. A. Estyunin, I. I. Klimovskikh et al., Scient. Rep. 10, 13226 (2020).
  31. 31. А. М. Шикин, Д. А. Естюнин, Н. Л. Зайцев и др., ЖЭТФ 161, 126 (2022) [A. M. Shikin, D. A. Estyunin, N. L. Zaitsev et al., JETP 134, 103 (2022)].
  32. 32. M. Garnica, M. M. Otrokov, P. C. Aguilar et al., npj Quant. Mater. 7, 7 (2022).
  33. 33. S. V. Eremeev, M. M. Otrokov, A. Ernst et al., Phys. Rev. B 105, 195105 (2022).
  34. 34. A. M. Shikin, T. P. Makarova, A. V. Eryzhenkov et al., Physica B 649, 414443 (2023).
  35. 35. Y.-J. Hao, P. Liu, Y. Feng et al., Phys. Rev. X 9, 041038 (2019).
  36. 36. Y. J. Chen, L. X. Xu, J. H. Li et al., Phys. Rev. X 9, 041040 (2019).
  37. 37. P. Swatek, Y. Wu, L.-L. Wang et al., Phys. Rev. B 101, 161109 (2020).
  38. 38. S. V. Eremeev, I. P. Rusinov, Yu. M. Koroteev et al., J. Phys. Chem. Lett. 12, 4268 (2021).
  39. 39. H. Zhang, W. Yang, Y. Wang et al., Phys. Rev. B 103, 094433 (2021).
  40. 40. L. Zhou, Z. Tan, D. Yan et al., Phys. Rev. B 102, 085114 (2020).
  41. 41. A. M. Shikin, T. P. Estyunina, A. V. Eryzhenkov et al., Sci. Rep. 13, 16343 (2023).
  42. 42. В. А. Волков, В. В. Еналдиев, ЖЭТФ 149, 702 (2016) [V. A. Volkov and V. V. Enaldiev, JETP 122, 608 (2016)].
  43. 43. T. Imaeda, Y. Kawaguchi, Y. Tanaka et al., J. Phys. Soc. Jpn 88, 024402 (2019).
  44. 44. M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey et al., Phys. Rev. Lett. 122, 107202 (2019).
  45. 45. Y. Li, Y. Jiang, J. Zhang et al., Phys. Rev. B 102, 121107 (2020).
  46. 46. S. Coh, D. Vanderbilt, A. Malashevich et al., Phys. Rev. B 83, 085108 (2011).
  47. 47. N. P. Armitage and L. Wu, SciPost Phys. 6, 046 (2019).
  48. 48. G. Rosenberg and M. Franz, Phys. Rev. B 82, 035105 (2010).
  49. 49. N. Yamamoto, Phys. Rev. D 93, 085036 (2016).
  50. 50. F. S. Nogueira, Z. Nussinov, and J. van den Brink, Phys. Rev. D 94, 085003 (2016).
  51. 51. J. Wang, B. Lian, and S.-C. Zhang, Phys. Rev. B 93, 045115 (2016).
  52. 52. H. Ooguri and M. Oshikawa, Phys. Rev. Lett. 108, 161803 (2012).
  53. 53. M. Otani and O. Sugino, Phys. Rev. B 73, 115407 (2006).
  54. 54. N. Troullier and J. Martins, Phys. Rev. B 43, 1993 (1991).
  55. 55. T. Ozaki, Phys. Rev. B 67, 155108 (2003).
  56. 56. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
  57. 57. T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).
  58. 58. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  59. 59. M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 73, 045110 (2006).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library