RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

SPIN-FLOP TRANSITION, INDUCING THE MAGNITOSTRICTION AND DIELECTRIC ANOMALIES IN α-MnS SINGLE CRYSTAL

PII
10.31857/S004445102403009X-1
DOI
10.31857/S004445102403009X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 3
Pages
396-403
Abstract
The first experimental investigation of the magnetic and magnetistriction properties of the alfa-manganese monosulphide (α-MnS) with the cubic (NaCl-type) structure and antiferromagnetic transition at T=150 K are presented in the temperature range of 4.2–300 K at applied magnetic field up to 90 kOe. It is found, that the field dependences of the magnetization and longitudinal magnitostriction of the α-MnS single crystal have an anomalies, which are correlated with the anomalies of its dielectric permittivity. The spin-flop (SF) transition with Hsf ~ 50–70 kOe governed by the magnetic easy-plane anisotropy was observed in the temperature range below 130 K. Isotermal investigations show that the longitudinal magnetostriction and dielectric permittivity in external magnetic fields reveal its value change of 10-3 at Hsf.
Keywords
order disorder and phase transition in condensed system
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
99

References

  1. 1. M. B. Jungfleisch, W. Zhang, and A. Hoffmann, Phys. Lett.A 382, 865 (2018).
  2. 2. A.A. Bukharaev, A.K. Zvezdin, A.P. Pyatakov et al., Physics-Uspekhi 61, 1175 (2018)
  3. 3. 3. A.V. Chumak, V. I. Vasyuchka, A.A. Serga et al., Nature Physics 11, 453 (2015).
  4. 4. E. Aytan, B. Debnath, F. Kargar et al., Apl.Phys. Lett. 111, 252402 (2017).
  5. 5. S. Palchoudhury, K. Ramasamy, R. Gupta et al., Front.Mater. 5, 83 (2019).
  6. 6. S. Baierl, J.H. Mentink, M. Hohenleutner et al., Phys.Rev. Lett. 117, 197201 (2016).
  7. 7. D.A. Balaev, A.A. Krasikov, S. I. Popkov et al., J.Magn.Magn.Mater. 539, 168343 (2021).
  8. 8. F. L. A.Machado, P.R.T. Ribeiro, J. Holanda et al., Phys.Rev.B 95, 104418 (2017).
  9. 9. R.B. Pujary, A.C. Lokhande, A.A. Ayday et al., Materias and Design. 108, 511 (2016).
  10. 10. C.N.R. Rao and K.P.R. Picharody, Prog. Sol. St. Chem. 10, 207 (1976).
  11. 11. W. L. Roth, J. de Physique, suppl.C7 38, C7-151 (1977).
  12. 12. M. E. Lines and E.D. Jones, Phys.Rev. 141, 525 (1966).
  13. 13. B. Morosin, Phys.Rev.B 1, 236 (1970).
  14. 14. H.H. Heikens, G.A. Wiegers, and C. F. Bruggen, Sol. St.Commun. 24(3), 205 (1977).
  15. 15. H. van der Heide, C. F. van Bruggen, G.A. Wiegers, and C. Haas, J. Phys.C: Sol. St.Phys. 16, 855 (1983).
  16. 16. W. Kleemann and F. J. Schafer, J. Magn. Magn. Mater. 25, 317 (1982).
  17. 17. T.R.Ch. Kant, F. Mayr, and A. Loidl, Phys.Rev.B 77, 024421 (2008).
  18. 18. J.V. Gerasimova, G.M. Abramova, V. S. Zhandun et al., J.Raman Spectrosc. 50, 1572 (2019).
  19. 19. A. Tomas, L. Brossard, J. L. Dormann et al., J.Magn.Magn.Mater. 31, 755 (1983).
  20. 20. G.M. Abramova, Yu.V. Knyazev, O.A. Bayukov et al., Phy. Sol. St. 63, 68 (2021).
  21. 21. G. Abramova, Ju. Schefer, N. Aliouane et al., J.Aloys Compd. 632, 563 (2015).
  22. 22. S. S. Aplesnin, L. I. Ryabinkina, G.M. Abramova et al., Phys. Sol. St. 46, 2067 (2004).
  23. 23. G. Abramova, А. Freydman, E. Eremin et al., J. Supercond.Nov.Magn. 35, 277 (2022).
  24. 24. D. S. Rodbel and J. Owen, J.Appl.Phys. 35, 1002 (1964).
  25. 25. T. Yildirim, A.B. Harris, and E. F. Shender, Phys. Rev.B 58, 3144 (1998).
  26. 26. M.A. Carpenter, Z. Zhang, and Ch. J. Howard, J. Phys.: Cond.Matt. 24, 156002 (2012).
  27. 27. Z. Zhang, N. Church, S.-Ch. Lappe et al., J. Phys.: Cond.Matt. 24, 215404 (2012).
  28. 28. G.M. Abramova, G. Petrakovskiy, R. Zuberek, et al., JETP Lett. 90, 207 (2009).
  29. 29. F. Keeper and W. O’Sullvan, Phys.Rev. 108, 627 (1957).
  30. 30. D. Bloch, J. L. Feron, R. Georges et al., J.Appl.Phys. 38, 1474 (1967).
  31. 31. Г.М. Абрамова, А.Л. Фрейдман, В. В. Соколов, Патент RU 2 793 017 C1 (2023).
  32. 32. L.A. Solovyov, J.Appl.Crystallogr. 37, 743 (2004).
  33. 33. А.Л. Фрейдман, С.И. Попков, С. В. Семенов, и др., Письма в ЖТФ 44, 79 (2018).
  34. 34. J. J. Banewicz and R. Lindait, Phys.Rev. 104, 318 (1956).
  35. 35. Дж. Смарт, Эффективное поле в теории магнетизма, Мир, Москва (1968).
  36. 36. P. de V. du Plessis, S. J. van Tonder, and L. Alberts, J. Phys.C: Solid State Phys. 4, 2565 (1971).
  37. 37. T.R. McGuire and W.A. Crapo, J.Appl.Phys. 33, 1291 (1962).
  38. 38. S. Steger and V.Yu. Pomjakushin, VP Report PSI, Switzerland (2008).
  39. 39. E.A. Turov, Physical Properties of Magnetically Ordered Crystals, Academic, New York (1965).
  40. 40. V. S. Mandel, V.D. Voronkov, and D.E. Gromzin, J. Exp.Theor. Phys. 36, 521 (1973).
  41. 41. A. Pankrats, G. Petrakovskii, L. Bezmatemyik et al., Phys. Sol. St. 50, 79 (2008).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library