- PII
- 10.31857/S0044451024030052-1
- DOI
- 10.31857/S0044451024030052
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 3
- Pages
- 355-366
- Abstract
- Transition metal dichalcogenides (TMDs) are attracting continuously growing attention due to a number of their unique properties. Possibilities of their application are significantly defined by improvement of obtaining methods. In this work we study formation of TMD (MoS2, WS2) mesoporous films during chemical vapor deposition with the use of gaseous H2S and thermally evaporated transition metals (Mo or W). Morphology, Raman spectra, photoluminescent properties and electrical conductivity of TMD films are investigated at different precursors concentrations and deposition duration times. The analysis revealed main stages of TMD films growth: isolated 2D monocrystalline islands formation (i), partial overlapping of these crystallites with their gradual growth in the plane of the substrate (ii), formation and growth of plate-like crystallites oriented perpendicular to the substrate surface (iv). Qualitative changes of morphology, electrical conductivity and PL properties of TMD films are explained with taking into account interaction of TMD electronic sub-system with the substrate and neighboring crystallites.
- Keywords
- transition metal dichalcogenides nanowalls chemical vapor deposition MoS2 WS2 monolayers
- Date of publication
- 15.03.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 99
References
- 1. S. Manzeli, D. Ovchinnikov, D. Pasquier et al., Nat. Rev. Mater. 2, 17033 (2017).
- 2. Л. А. Чернозатонский, А. А. Артюх, УФН 188, 3 (2018).
- 3. G. R. Bhimanapati, Z. Lin, V. Meunier et al., ACS Nano 9, 11509 (2015).
- 4. Y. Feng, L. Shen, M. Yang et al., WIREs Comput. Mol. Sci. 7, 5 (2017).
- 5. J. R. Schaibley, H. Yu, G. Clark et al., Nat. Rev. Mater. 1, 16055 (2016).
- 6. T.-H. Wang and H.-T. Jeng, Npj Comput. Mater. 3, 5 (2017).
- 7. Y. Yi, Z. Chen, X. Yu et al., Adv. Quantum Technol. 2, 1800111 (2019).
- 8. Y. Lin, X. Ling, L. Yu et al., Nano Lett. 14, 5569 (2014).
- 9. K. F. Mak and J. Shan, Nat. Photonics 10, 216 (2016).
- 10. X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng et al., Nano Lett. 15, 410 (2015).
- 11. Y. Liu, N. O. Weiss, X. Duan et al., Nature Rev. Mat., 1, 16042 (2016).
- 12. P. K. Sahoo, S. Memaran, Y. Xin et al., Nature, 553, 7686, 63 (2018).
- 13. M. Bernardi, M. Palummo, and J. C. Grossman, Nano Lett. 13, 3664 (2013).
- 14. Y. Sheng, T. Chen, Y. Lu et al., ACS Nano 13, 4530 (2019).
- 15. H. F. Liu, S. L. Wong, D. Z. Chi, Chem. Vap. Depos. 21, 241 (2015).
- 16. C. S. Lau, J. Y. Chee, L. Cao et al., Adv. Mater. 34, 2103907, (2022).
- 17. X. Ma, J. Zhang, Y. Sun et al., ACS Appl. Mater. Interfaces 14 41, 47288 (2022).
- 18. X. Peng, J. Chen, S. Wang et al., Appl. Surf. Sci. 599, 153904 (2022).
- 19. S. Mobtakeri, S. Habashyani, and E. Gur, ACS Applied Materials and Interfaces, 14, 25741 (2022).
- 20. V. Forsberg, R. Zhang, J. Backstrom et al., PLOS ONE 11, e0154522 (2016).
- 21. J. Sun, X. Li, W. Guo et al., Crystals 7, 198 (2017).
- 22. S. Li, X. Chen, F. Liu, et al., ACS Appl. Mater. Interfaces, 11, 11636 (2019).
- 23. A. B. Loginov, P. V. Fedotov, S. N. Bokova-Sirosh et al., Phys. Stat. Sol. B 260, 2200481 (2022).
- 24. А. Б. Логинов, Р. Р. Исмагилов, С. Н. Бокова-Сирош и др., ЖТФ 91, 1509 (2021).
- 25. С. А. Смагулова, П. В. Винокуров, А. А. Семенова и др., ФТП 54, 376 (2020).
- 26. М. С. Аржаков, Н. А. Александрова, А. Е. Жирнов и др., ДАН 418, 782 (2008).
- 27. А. А. Золотухин, А. Н. Образцов, А. О. Устинов и др., ЖЭТФ 124, 1291 (2003).
- 28. N. Scheuschner, O. Ochedowski, A.-M. Kaulitz et al., Phys. Rev. B 89, 125406 (2014).
- 29. A. Splendiani, L. Sun, Y. Zhang et al., Nano Lett. 10, 1271 (2010).
- 30. K. F. Mak, K. He, C. Lee et al., Nat. Mater. 12, 207 (2013).
- 31. A. R. Klots, A. K. M. Newaz, B. Wang et al., Sci. Rep. 4, 6608 (2014).
- 32. B. M. Lee and K. J. Loh, J. Mater. Sci. 50, 2973 (2015).