RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

CHANGES IN TRANSITION METAL DICHALCOGENIDE FILMS PROPERTIES ON VARIOUS STAGES OF CHEMICAL VAPOR DEPOSITION

PII
10.31857/S0044451024030052-1
DOI
10.31857/S0044451024030052
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 3
Pages
355-366
Abstract
Transition metal dichalcogenides (TMDs) are attracting continuously growing attention due to a number of their unique properties. Possibilities of their application are significantly defined by improvement of obtaining methods. In this work we study formation of TMD (MoS2, WS2) mesoporous films during chemical vapor deposition with the use of gaseous H2S and thermally evaporated transition metals (Mo or W). Morphology, Raman spectra, photoluminescent properties and electrical conductivity of TMD films are investigated at different precursors concentrations and deposition duration times. The analysis revealed main stages of TMD films growth: isolated 2D monocrystalline islands formation (i), partial overlapping of these crystallites with their gradual growth in the plane of the substrate (ii), formation and growth of plate-like crystallites oriented perpendicular to the substrate surface (iv). Qualitative changes of morphology, electrical conductivity and PL properties of TMD films are explained with taking into account interaction of TMD electronic sub-system with the substrate and neighboring crystallites.
Keywords
transition metal dichalcogenides nanowalls chemical vapor deposition MoS2 WS2 monolayers
Date of publication
15.03.2024
Year of publication
2024
Number of purchasers
0
Views
99

References

  1. 1. S. Manzeli, D. Ovchinnikov, D. Pasquier et al., Nat. Rev. Mater. 2, 17033 (2017).
  2. 2. Л. А. Чернозатонский, А. А. Артюх, УФН 188, 3 (2018).
  3. 3. G. R. Bhimanapati, Z. Lin, V. Meunier et al., ACS Nano 9, 11509 (2015).
  4. 4. Y. Feng, L. Shen, M. Yang et al., WIREs Comput. Mol. Sci. 7, 5 (2017).
  5. 5. J. R. Schaibley, H. Yu, G. Clark et al., Nat. Rev. Mater. 1, 16055 (2016).
  6. 6. T.-H. Wang and H.-T. Jeng, Npj Comput. Mater. 3, 5 (2017).
  7. 7. Y. Yi, Z. Chen, X. Yu et al., Adv. Quantum Technol. 2, 1800111 (2019).
  8. 8. Y. Lin, X. Ling, L. Yu et al., Nano Lett. 14, 5569 (2014).
  9. 9. K. F. Mak and J. Shan, Nat. Photonics 10, 216 (2016).
  10. 10. X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng et al., Nano Lett. 15, 410 (2015).
  11. 11. Y. Liu, N. O. Weiss, X. Duan et al., Nature Rev. Mat., 1, 16042 (2016).
  12. 12. P. K. Sahoo, S. Memaran, Y. Xin et al., Nature, 553, 7686, 63 (2018).
  13. 13. M. Bernardi, M. Palummo, and J. C. Grossman, Nano Lett. 13, 3664 (2013).
  14. 14. Y. Sheng, T. Chen, Y. Lu et al., ACS Nano 13, 4530 (2019).
  15. 15. H. F. Liu, S. L. Wong, D. Z. Chi, Chem. Vap. Depos. 21, 241 (2015).
  16. 16. C. S. Lau, J. Y. Chee, L. Cao et al., Adv. Mater. 34, 2103907, (2022).
  17. 17. X. Ma, J. Zhang, Y. Sun et al., ACS Appl. Mater. Interfaces 14 41, 47288 (2022).
  18. 18. X. Peng, J. Chen, S. Wang et al., Appl. Surf. Sci. 599, 153904 (2022).
  19. 19. S. Mobtakeri, S. Habashyani, and E. Gur, ACS Applied Materials and Interfaces, 14, 25741 (2022).
  20. 20. V. Forsberg, R. Zhang, J. Backstrom et al., PLOS ONE 11, e0154522 (2016).
  21. 21. J. Sun, X. Li, W. Guo et al., Crystals 7, 198 (2017).
  22. 22. S. Li, X. Chen, F. Liu, et al., ACS Appl. Mater. Interfaces, 11, 11636 (2019).
  23. 23. A. B. Loginov, P. V. Fedotov, S. N. Bokova-Sirosh et al., Phys. Stat. Sol. B 260, 2200481 (2022).
  24. 24. А. Б. Логинов, Р. Р. Исмагилов, С. Н. Бокова-Сирош и др., ЖТФ 91, 1509 (2021).
  25. 25. С. А. Смагулова, П. В. Винокуров, А. А. Семенова и др., ФТП 54, 376 (2020).
  26. 26. М. С. Аржаков, Н. А. Александрова, А. Е. Жирнов и др., ДАН 418, 782 (2008).
  27. 27. А. А. Золотухин, А. Н. Образцов, А. О. Устинов и др., ЖЭТФ 124, 1291 (2003).
  28. 28. N. Scheuschner, O. Ochedowski, A.-M. Kaulitz et al., Phys. Rev. B 89, 125406 (2014).
  29. 29. A. Splendiani, L. Sun, Y. Zhang et al., Nano Lett. 10, 1271 (2010).
  30. 30. K. F. Mak, K. He, C. Lee et al., Nat. Mater. 12, 207 (2013).
  31. 31. A. R. Klots, A. K. M. Newaz, B. Wang et al., Sci. Rep. 4, 6608 (2014).
  32. 32. B. M. Lee and K. J. Loh, J. Mater. Sci. 50, 2973 (2015).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library