RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

SCREENED AND VAN DER WAALS INTERACTIONS IN DUSTY PLASMA AND ELECTROLYTES

PII
10.31857/S0044451024020135-1
DOI
10.31857/S0044451024020135
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 2
Pages
276-293
Abstract
Screened electrostatic and van der Waals interactions of nano- and micron-sized particles in dusty plasma were considered. The electrostatic interaction is considered on the basis of the linearized Poisson-Boltzmann equation for particles both with fixed charges uniformly distributed over their surfaces and with fixed surface electric potentials. The found solution of the problem makes it possible to study the interaction of both particles of comparable radius and particles of very different sizes. The interaction force takes into account the osmotic component, which in the case of constant charges leads to the restoration of the equality of the forces acting on the first and second particles. For the van der Waals interaction, the screening of static fluctuations and the retardation of electromagnetic fields for the dispersive part of the interaction were taken into account. Based on the analysis of various expressions for the geometric factor, taking into account the retardation of the electromagnetic field, a numerically stable method for calculating this factor was proposed. The total energy of interaction of two charged dust particles is calculated for plasma parameters characteristic of dusty plasma: the electron and ion number densities from 108 to 1012 cm-3, the particle radius from 10 nm to 1 μm and the particle charges from 10 to 103 elementary charges per micron of particle radius.
Keywords
Screening linearized Debye-Hückel equation dusty plasma dust particle van der Waals interaction geometric factor retardation
Date of publication
15.02.2024
Year of publication
2024
Number of purchasers
0
Views
106

References

  1. 1. J. N. Israelachvili, Intermolecular and surface forces, 3rd ed., Elsevier, Amsterdam (2011), p.191–499.
  2. 2. B. Honig and A. Nicholls, Science 268, 1144 (1995).
  3. 3. I. Ledezma-Yanez,W. D. Z. Wallace, P. Sebasti´an-Pascual, V. Climent, J. M. Feliu, and M. T. Koper, Nat. Energy 2 (4), 17031 (2017).
  4. 4. B. Smit, J. A. Reimer, C. M. Oldenburg, and I. C. Bourg, Introduction to Carbon Capture and Sequestration, v.1., World Scientific, Singapore (2014).
  5. 5. M. Manciu and E. Ruckenstein, Langmuir 17, 7061 (2001).
  6. 6. H. Wennerstrom, E. Vallina Estrada, J. Danielsson, and M. Oliveberg, Proc. Natl. Acad. Sci. USA 117, 10113 (2020).
  7. 7. S. Su, I. Siretanu, D. van den Ende, B.Mei, G.Mul, and F. Mugele, Adv. Mater. 33, 2106229 (2021).
  8. 8. D. F. Parsons, M. Bostr¨om, P. L. Nostro, and B. W. Ninham, Phys. Chem. Chem. Phys. 13 (27), 12352 (2011).
  9. 9. K. Vo¨ıtchovsky, J. J. Kuna, S. A. Contera, E. Tosatti, and F. Stellacci, Nat. Nanotechnol. 5, 401 (2010).
  10. 10. В. Н. Цытович, УФН 167, 57 (1997).
  11. 11. В. Е. Фортов, А. Г. Храпак, С. А. Храпак, В. И. Молотков, О. Ф. Петров, УФН 174, 495 (2004).
  12. 12. В. И. Молотков, О. Ф. Петров, М. Ю. Пустыльник, В. М. Торчинский, В. Е. Фортов, А. Г. Храпак, ТВТ 42, 821 (2004).
  13. 13. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas, London, Imperial College Press (2005).
  14. 14. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).
  15. 15. G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
  16. 16. M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73, 066501 (2010).
  17. 17. Комплексная и пылевая плазма: из лаборатории в космос, под ред. В. Фортова, Г. Морфилла, Наука, Физматлит, Москва (2012).
  18. 18. A. Ivlev, H. Lowen, G. Morfill, and C.P. Royall, Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids, Series in Soft Condensed Matter, vol. 5, World Scientific, Singapore (2012).
  19. 19. I. Mann, N. Meyer-Vernet, and A. Czechowski, Phys. Rep. 536, 1 (2014).
  20. 20. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, CRC Press, Bristol and Philadelphia (2015).
  21. 21. А. В. Ивлев, С .А. Храпак, В. И. Молотков, А. Г. Храпак, Введение в физику пылевой и комплексной плазмы. Учебное пособие, Издательский дом «Интеллект», Долгопрудный (2017).
  22. 22. А. М. Липаев, В. И. Молотков, Д. И. Жуховицкий, В. Н. Наумкин, А. Д. Усачев, А. В. Зобнин, О. Ф. Петров, В. Е. Фортов, ТВТ 58 (4), 485 (2020).
  23. 23. I. M. Kennedy and S. J. Harris, J. Colloid. Interface. Sci. 130, 489 (1989).
  24. 24. P. Patra and A. Roy, Phys. Rev. Fluids 7, 064308 (2022).
  25. 25. T. B. Jones and T. B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge (2005).
  26. 26. A. Castellanos, Adv. Phys. 54, 263 (2005).
  27. 27. J. Feng, G. Biskos, and A. Schmidt-Ott, Scient. Rep. 5, 1 (2015).
  28. 28. F. Greiner, A. Melzer, B.Tadsen, S. Groth, C. Killer, F. Kirchschlager, F. Wieben, I. Pilch, H. Kruger, D. Block, A. Piel, and S. Wolf, Eur. Phys. J. D 72, 81 (2018).
  29. 29. A. R. Wassel, M. E. El-Naggar, and K. Shoueir, J. Environ. Chem. Eng. 8 104175, (2020).
  30. 30. X. Meng, J. Zhu, and J. Zhang, J. Phys. D 42, 065201 (2009).
  31. 31. V. A. Turek, M. P. Cecchini, J. Paget, A. R. Kucernak, A. A. Kornyshev, and J. B. Edel, ACS Nano 6, 7789 (2012).
  32. 32. P.-P. Fang, S. Chen, H. Deng, M. D. Scanlon, F. Gumy, H. J. Lee, D. Momotenko, V. Amstutz, F. Cort´es-Salazar, C. M. Pereira, Z. Yang, and H. H. Girault, ACS Nano 7, 9241 (2013).
  33. 33. J. B. Edel, A. A. Kornyshev, and M. Urbakh, ACS Nano 7, 9526 (2013).
  34. 34. B. Gady, D. Schleef, R. Reifenberger, D. Rimai, and L. P. DeMejo, Phys. Rev. B 53, 8065 (1996).
  35. 35. B. Gady, R. Reifenberger, D. S. Rimai, and L.P. DeMejo, Langmuir 13, 2533 (1997).
  36. 36. Y. Liu, C. Song, G. Lv, N. Chen, H. Zhou, and X. Jing, Appl. Surf. Sci. 433, 450 (2018).
  37. 37. M. C. Stevenson, S. P. Beaudoin, and D. S. Corti, J. Phys. Chem. C 124 3014 (2020).
  38. 38. M.C. Stevenson, S.P. Beaudoin, and D.S. Corti, J. Phys. Chem. C 125 20003 (2021).
  39. 39. H. Zhou, M. G¨otzinger, and W. Peukert, Powder Technol. 135–136, 82 (2003).
  40. 40. Y. Gao, E. Tian, and J. Mo, ACS ES and Eng. 1, 1449 (2021).
  41. 41. N. M. Kovalchuk, D. Johnson, V. Sobolev, N. Hilal, and V. Starov, Adv. Colloid. Interface. Sci. 272, 102020 (2019).
  42. 42. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces, Consultants Bureau, New York (1987).
  43. 43. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).
  44. 44. A. B. Glendinning and W. B. Russel, J. Colloid Interface Sci.93, 95 (1983).
  45. 45. S. L. Carnie, D. Y. C. Chan, J. Colloid. Interf. Sci. 161, 260 (1993).
  46. 46. А. В. Филиппов, И. Н. Дербенев, ЖЭТФ 150, 1262 (2016).
  47. 47. I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, J. Chem. Phys. 145, 084103 (2016).
  48. 48. А. В. Филиппов, И. Н. Дербенев, А. А. Паутов, М. М. Родин, ЖЭТФ, 152, 607 (2017).
  49. 49. I. N. Derbenev, A. V. Filippov, A.J. Stace, and E. Besley, Soft Matter 14, 5480 (2018).
  50. 50. S. V. Siryk, A. Bendandi, A. Diaspro, and W. Rocchia, J. Chem. Phys. 155, 114114 (2021).
  51. 51. S. V. Siryk and W. Rocchia, J. Phys. Chem. B 126, 10400 (2022).
  52. 52. Y.-K. Yu, Phys. Rev. E 102, 052404 (2020).
  53. 53. O. I. Obolensky, T. P. Doerr, and Y.-K. Yu, Eur. Phys. J. E 44, 129 (2021).
  54. 54. W. R. Bowen and F. Jenner, Adv. Colloid Interface Sci. 56, 201 (1995).
  55. 55. J. I. Kilpatrick, S.-H. Loh, and S. P. Jarvis, J. Am. Chem. Soc. 135, 2628 (2013).
  56. 56. S. R. Van Lin, K. K. Grotz, I. Siretanu, N. Schwierz, and F. Mugele, Langmuir 35, 5737 (2019).
  57. 57. A. Klaassen, F. Liu, F. Mugele, and I. Siretan, Langmuir 38, 914 (2022).
  58. 58. А. В. Филиппов, В.М. Старов, Письма в ЖЭТФ 117, 604 (2023).
  59. 59. A. V. Filippov and V. Starov, J. Phys. Chem. B 127, 6562 (2023).
  60. 60. А. В. Филиппов, ЖЭТФ 136, 601 (2009).
  61. 61. A. V. Filippov, Contr. Plasma Phys. 49, 433 (2009).
  62. 62. В. Р. Муниров, А. В. Филиппов, ЖЭТФ 144, 931 (2013).
  63. 63. А. В. Филиппов, Письма в ЖЭТФ 115, 197 (2022).
  64. 64. А. В. Филиппов, ЖЭТФ 161, 691 (2022).
  65. 65. P. Debye and E. H¨uckel, Phys. Zeitschr. 24, 185 (1923).
  66. 66. Г. Карслоу, Д. Егер, Теплопроводность твердых тел, Наука, Москва (1964)
  67. 67. Г. Н. Ватсон, Теория бесселевых функций, Иностранная литература, Москва (1949), т.1.
  68. 68. D. Langbein, Theory of Van der Waals Attraction, Springer Tracts in Modern Physics, Vol. 72, ed. by G. Hohler, Springer-Verlag, Berlin–Heidelberg–New York (1974).
  69. 69. В. В. Батыгин, И. Н. Топтыгин, Сборник задач по электродинамике, Наука, Москва (1970).
  70. 70. В. Смайт, Электростатика и электродинамика, Издателство иностарнной литературы, Москва (1954).
  71. 71. В .Р. Муниров, А. В. Филиппов, ЖЭТФ 142, 594 (2012).
  72. 72. E. S. Reiner, C. J. Radke, J. Chem. Soc. Faraday Trans.86, 3901 (1990).
  73. 73. M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, J. Phys. Chem. 97, 3591 (1993).
  74. 74. B. Lu, X. Cheng, T. Hou, and J. A. McCammon, J. Chem. Phys. 123, 084904 (2005).
  75. 75. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes Example Book (FORTRAN), Cambridge University Press, Cambridge (1992).
  76. 76. H. C. Hamaker, Physica 4, 1058 (1937).
  77. 77. H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
  78. 78. Е. М. Лифшиц, ЖЭТФ 29, 94 (1955).
  79. 79. И. Е. Дзялошинский, Е. М. Лифшиц, Л.П. Питаевский, ЖЭТФ 37, 229 (1959).
  80. 80. Б. В. Дерягин, И. И. Абрикосова, Е. М. Лифшиц, УФН 185, 981 (2015).
  81. 81. Ю. С. Бараш, В. Л. Гинзбург, УФН 143 , 345 (1984).
  82. 82. Н. В. Чураев, Успехи химии 73, 26 (2004).
  83. 83. D. J. Mitchell and B. W. Ninham, J. Chem. Phys. 56, 1117 (1972).
  84. 84. R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75, 1400 (1981).
  85. 85. J. Th. G. Overbeek, in Colloid Science, ed. By H. R. Kruyt, Vol. 1, p. 266, Elsevier, Amsterdam (1952).
  86. 86. B. Vincent, J. Colloid. Interf. Sci. 42, 270 (1973).
  87. 87. P. G¨orner and J. Pich, J. Aerosol Sci. 20, 735 (1989).
  88. 88. J. Chen and A. Anandarajah, J. Colloid. Interf. Sci. 180, 519 (1996).
  89. 89. G. Sh. Boltachev, N. B. Volkov, and K. A. Nagayev, J. Colloid. Interf. Sci. 355, 417 (2011).
  90. 90. S. R. Gomes de Sousa, A. Leonel, and A. J. F. Bombard, Smart Mater. Struct. 29, 055039 (2020).
  91. 91. А. А. Радциг, Б. М. Смирнов,Справочник по атомной и молекулярной физике, Атомиздат, Москва (1980).
  92. 92. А. В. Филиппов, Н. А. Дятко, А. С. Костенко, ЖЭТФ 146, 1122–1134 (2014).
  93. 93. А.В. Филиппов, В.Н. Бабичев, А. Ф. Паль, А. Н. Старостин, В. Е. Черковец, В. К. Рерих, М. Д. Таран, Физика плазмы 41, 969 (2015).
  94. 94. W. Gautschi and J. Slavik, Math. Comput. 32, 865 (1978).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library