RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

ON THE THEORY OF HOMOGENEOUS NUCLEATION OF INCOHERENT INCLUSIONS IN SOLID SOLUTIONS

PII
10.31857/S004445102402007X-1
DOI
10.31857/S004445102402007X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 2
Pages
214-225
Abstract
Based on a critical analysis of the traditional theory of homogeneous nucleation of incoherent precipitates of a new phase in solid solutions, it is shown that the elastic energy associated with a difference in the atomic volumes of two phases does not contribute to the nucleation barrier due to the absorption of thermal point defects at the particle-matrix interface (in contrast to the traditional approach). Correspondingly, a new kinetic model is developed for the rate of nucleation of incoherent precipitates in a supersaturated solid solution of alloying atoms, which has also been generalized to take into account excess vacancies formed under non-equilibrium conditions of quenching tests.
Keywords
incoherent inclusions solid solutions homogeneous nucleation Reiss theory
Date of publication
15.02.2024
Year of publication
2024
Number of purchasers
0
Views
101

References

  1. 1. R.W. Balluffi, S.M. Allen, and W.C. Carter, Kinetics of Materials, John Wiley and Sons (2005).
  2. 2. R.E. Smallman and A.H.W. Ngan, Physical Metallurgy and Advanced Materials, 7th ed. Elsevier (2007).
  3. 3. J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford (1975). 224
  4. 4. D. Turnbull, H.S. Rosenbaum, and H.N. Treaftis, Kinetics of Clustering in Some Aluminium Alloys, Acta Metallurgica 8, 277 (1960).
  5. 5. H.S Rosenbaum and D. Turnbull, On the Precipitation of Silicon out of a Supersaturated Aluminum-Silicon Solid Solution, Acta Metallurgica 6, 653 (1958).
  6. 6. H.S. Rosenbaum and D Turnbull, Metallographic Investigation of Precipitation of Silicon from Aluminum, Acta Metallurgica 7, 664 (1959).
  7. 7. E. Ozawa and H. Kimura, Excess Vacancies and the Nucleation of Precipitates in Aluminum-Silicon Alloys, Acta Metallurgica 18, 995 (1970).
  8. 8. E. Hornbogen and E. A. Starke Jr., Theory Assisted Design of High Strength Low Alloy Aluminum, Acta Metallurgica et Materialia 41, 1 (1993).
  9. 9. F.R.N. Nabarro, The Influence of Elastic Strain on the Shape of Particles Segregating in an Alloy, Proc. Phys. Soc. 52, 90 (1940).
  10. 10. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series in Solid State Science, Vol. 155, Springer (2007).
  11. 11. K.C. Russel, The Role of Excess Vacancies in Precipitation, Scripta Metallurgica 3, 313 (1969).
  12. 12. M. Volmer and A. Weber, Keimbildung in ¨ Ubers¨attigten Gebilden, Z. Phys. Chem. 119, 277 (1926).
  13. 13. R. Becker and W. Doering, Kinetische Behandlung der Keimbildung in ¨ Ubers¨attigten D¨ampfen, Ann. Phys. 24, 719 (1935).
  14. 14. Ja.B. Zeldovich,On the Theory of New Phase Formation: Cavitation, Acta Physicochim. URSS 18, 1 (1943).
  15. 15. H. Reiss, The kinetics of Phase Transitions in Binary Systems, J. Chem. Phys. 18, 840 (1950).
  16. 16. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge (1995).
  17. 17. J.S. Langer, Statistical Theory of the Decay of Metastable States, Annals of Physics 54, 258 (1969).
  18. 18. D. Stauffer, Kinetic Theory of Two-Component, Nucleation and Condensation, J. Aerosol Sci. 7, 319 (1976).
  19. 19. L.M. Berezhkovskii and V.Yu. Zitserman, Direction of the Nucleation Current through the Saddle Point in the Binary Nucleation Theory and the Saddle Point Avoidance, J. Chem. Phys. 102, 3331 (1995).
  20. 20. Я.И. Френкель, Кинетическая теория жидкостей, Изд. АН СССР (1945).
  21. 21. J. Lothe an G.M. Pound, Reconsiderations of Nucleation Theory, J. Chem. Phys. 36, 2080 (1962).
  22. 22. D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth Heinemann, Oxford, Boston (2000).
  23. 23. H. Reiss and J.L. Katz,Resolution of the Translation – Rotation Paradox in the Theory of Irreversible Condensation, J. Chem. Phys. 46, 2496 (1967).
  24. 24. H. Reiss, J.L. Katz, and E.R. Cohen, Translation–Rotation Paradox in the Theory of Nucleation, J. Chem. Phys. 48, 5553 (1968).
  25. 25. J.L. Katz and H. Wiedersich,Nucleation of Voids in Materials Supersaturated with Vacancies and Interstitials, J. Chem. Phys. 55, 1414 (1971).
  26. 26. J.L. Katz, Homogeneous Nucleation Theory and Experiment: A Survey, Pure and Appl. Chem., 64, 1661 (1992).
  27. 27. M.S. Veshchunov, On the Theory of Void Nucleation in Irradiated Crystals, J. Nucl. Mater. 571, 154021 (2022).
  28. 28. L.D. Landau and E.M. Lifshitz, Theoretical Physics, Vol. 5: Statistical Physics, Pergamon Press (1980).
  29. 29. S.-I. Fujikawa, K.-I. Hirano, and Y. Fukushima, Diffusion of Silicon in Aluminium, Metallurgical Transactions A 9, 1811 (1978).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library