- PII
- 10.31857/S0044451024010115-1
- DOI
- 10.31857/S0044451024010115
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 1
- Pages
- 114-127
- Abstract
- The theory of size effects in the magnetoresistance of thin films of normal metals due to spin‑orbit interaction, which takes into account the surface scattering of conduction electrons with spin reversal, has been constructed. Experimental studies of structural and galvanomagnetic properties of β‑tantalum thin films of different thicknesses prepared by magnetron sputtering have been carried out. Based on the analysis of experimental data within the framework of the constructed theory, estimates of the spin diffusion length, spin relaxation time, and spin Hall angle for β‑tantalum thin films were made.
- Keywords
- spin‑orbit interaction spin current spin Hall effect inverse spin Hall effect Hanle magnetoresistance spin diffusion length
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 72
References
- 1. М. И. Дьяконов, В. И. Перель, Письма в ЖЭТФ13, 657 (1971).
- 2. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).
- 3. J.-N. Chazalviel, Phys. Rev. B 11, 3918 (1975).
- 4. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
- 5. S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
- 6. A. Hoffmann, IEEE Trans. Magn. 49, 5172 (2013).
- 7. Y. Niimi and Y. Otani, Rep. Prog. Phys. 78, 124501 (2015).
- 8. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H.Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
- 9. Spin Physics in Semiconductors, ed. by M. I. Dyakonov, Springer International Publishing, Cham (2017), p. 532.
- 10. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
- 11. J. Wunderlich, B. Kaestner, J. Sinova, and T.Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
- 12. S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
- 13. T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 98, 156601 (2007).
- 14. T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H.Imamura, S. Maekawa, J. Nitta, and K. Takanashi, Nat. Mater. 7, 125 (2008).
- 15. Y. Niimi, H. Suzuki, Y. Kawanishi, Y. Omori, T.Valet, A. Fert, and Y. Otani, Phys. Rev. B 89, 054401 (2014).
- 16. A. Manchon, J. Zelezny, I. M. Miron, T. Jungwirth,J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, Rev. Mod. Phys. 91, 035004 (2019).
- 17. Y. Cao, G. Xing, H. Lin, N. Zhang, H. Zheng, andK. Wang, iScience 23, 101614 (2020).
- 18. K. Ando, Proc. Jpn. Acad., Ser. B 97, 499 (2021).
- 19. D. Go, D. Jo, H.-W. Lee, M. Klaui, and Y. Mokrousov, Europhys. Lett. 135, 37001 (2021).
- 20. R. Ramaswamy, J. M. Lee, K. Cai, and H. Yang,Appl. Phys. Rev. 5, 031107 (2018).
- 21. A. Meo, C. E. Cronshaw, S. Jenkins, A. Lees, and R. F. L. Evans, J. Phys. Condens. Matter. 35, 025801 (2023).
- 22. A. A. Stashkevich, Изв. высших учебных заведений России. Радиоэлектроника [J. of the Russian Universities. Radioelectronics] 22, 45 (2019).
- 23. M. I. Dyakonov, Phys. Rev. Lett. 99, 126601 (2007).
- 24. S. Velez, V. N. Golovach, A. Bedoya-Pinto, M.Isasa, E. Sagasta, M. Abadia, C. Rogero, L. E. Hueso, F. S. Bergeret, and F. Casanova, Phys. Rev. Lett. 116, 016603 (2016).
- 25. H. Wu, X. Zhang, C. H. Wan, B. S. Tao, L. Huang,W. J. Kong, and X. F. Han, Phys. Rev. B 94, 174407 (2016).
- 26. J. Li, A. H. Comstock, D. Sun, and X. Xu, Phys.Rev. B 106, 184420 (2022).
- 27. В. В. Устинов, И. А. Ясюлевич, Физика Металлов и Металловедение 121, 257 (2020).
- 28. V. V. Ustinov and I. A. Yasyulevich, Phys. Rev. B102, 134431 (2020).
- 29. В. В. Окулов, В. В. Устинов, Физика Металлов и Металловедение 44, 43 (1977).
- 30. В. В. Устинов, ТМФ 44, 387 (1980).
- 31. J. D. Zuo, Y. Q. Wang, K. Wu, J. Y. Zhang, G.Liu, and J. Sun, Scr. Mater. 212, 114582 (2022).
- 32. M. Magnuson, G. Greczynski, F. Eriksson, L.Hultman, and H. Hogberg, Appl. Surf. Sci. 470, 607 (2019).
- 33. E. A. I. Ellis, M. Chmielus, and S. P. Baker, Acta.Mater. 150, 317 (2018).
- 34. R. Yu, B. F. Miao, L. Sun, Q. Liu, J. Du, P.Omelchenko, B. Heinrich, M. Wu, and H. F. Ding, Phys. Rev. Mater. 2, 074406 (2018).
- 35. D. Qu, S. Y. Huang, B. F. Miao, S. X. Huang, and C. L. Chien, Phys. Rev. B 89, 140407 (2014).
- 36. B. M. S. Bist and O. N. Srivastava, Thin SolidFilms 18, 71 (1973).
- 37. P. A. Lee and T. V. Ramakrishnan, Rev. Mod.Phys. 57, 287 (1985).
- 38. J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).
- 39. N. Schwartz, W. A. Reed, P. Polash, and M. H.Read, Thin Solid Films 14, 333 (1972).
- 40. M. A. Angadi, J. Mater. Sci. 20, 761 (1985).
- 41. M. Morota, Y. Niimi, K. Ohnishi, D. H. Wei, T.Tanaka, H. Kontani, T. Kimura, and Y. Otani, Phys. Rev. B 83, 174405 (2011).
- 42. C. Fang, C. H. Wan, B. S. Yang, J. Y. Qin, B. S.Tao, H. Wu, X. Zhang, X. F. Han, A. Hoffmann, X. M. Liu, and Z. M. Jin, Phys. Rev. B 96, 134421 (2017).
- 43. Y. Saito, N. Tezuka, S. Ikeda, and T. Endoh, AIPAdv. 11, 025007 (2021).
- 44. C. Hahn, G. de Loubens, O. Klein, M. Viret, V.V. Naletov, and J. Ben Youssef, Phys. Rev. B 87, 174417 (2013).
- 45. Y. Wang, P. Deorani, X. Qiu, J. H. Kwon, and H.Yang, Appl. Phys. Lett. 105, 152412 (2014).
- 46. J. T. Brangham, K.-Y. Meng, A. S. Yang, J. C.Gallagher, B. D. Esser, S. P. White, S. Yu, D. W. McComb, P. C. Hammel, and F. Yang, Phys. Rev. B 94, 054418 (2016).