RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

SPIN‑ORBIT COUPLING MEDIATED SIZE EFFECTS IN MAGNETORESISTANCE OF Ta NANOLAYERS

PII
10.31857/S0044451024010115-1
DOI
10.31857/S0044451024010115
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 1
Pages
114-127
Abstract
The theory of size effects in the magnetoresistance of thin films of normal metals due to spin‑orbit interaction, which takes into account the surface scattering of conduction electrons with spin reversal, has been constructed. Experimental studies of structural and galvanomagnetic properties of β‑tantalum thin films of different thicknesses prepared by magnetron sputtering have been carried out. Based on the analysis of experimental data within the framework of the constructed theory, estimates of the spin diffusion length, spin relaxation time, and spin Hall angle for β‑tantalum thin films were made.
Keywords
spin‑orbit interaction spin current spin Hall effect inverse spin Hall effect Hanle magnetoresistance spin diffusion length
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
72

References

  1. 1. М. И. Дьяконов, В. И. Перель, Письма в ЖЭТФ13, 657 (1971).
  2. 2. M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971).
  3. 3. J.-N. Chazalviel, Phys. Rev. B 11, 3918 (1975).
  4. 4. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
  5. 5. S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
  6. 6. A. Hoffmann, IEEE Trans. Magn. 49, 5172 (2013).
  7. 7. Y. Niimi and Y. Otani, Rep. Prog. Phys. 78, 124501 (2015).
  8. 8. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H.Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
  9. 9. Spin Physics in Semiconductors, ed. by M. I. Dyakonov, Springer International Publishing, Cham (2017), p. 532.
  10. 10. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science 306, 1910 (2004).
  11. 11. J. Wunderlich, B. Kaestner, J. Sinova, and T.Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
  12. 12. S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
  13. 13. T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 98, 156601 (2007).
  14. 14. T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H.Imamura, S. Maekawa, J. Nitta, and K. Takanashi, Nat. Mater. 7, 125 (2008).
  15. 15. Y. Niimi, H. Suzuki, Y. Kawanishi, Y. Omori, T.Valet, A. Fert, and Y. Otani, Phys. Rev. B 89, 054401 (2014).
  16. 16. A. Manchon, J. Zelezny, I. M. Miron, T. Jungwirth,J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, Rev. Mod. Phys. 91, 035004 (2019).
  17. 17. Y. Cao, G. Xing, H. Lin, N. Zhang, H. Zheng, andK. Wang, iScience 23, 101614 (2020).
  18. 18. K. Ando, Proc. Jpn. Acad., Ser. B 97, 499 (2021).
  19. 19. D. Go, D. Jo, H.-W. Lee, M. Klaui, and Y. Mokrousov, Europhys. Lett. 135, 37001 (2021).
  20. 20. R. Ramaswamy, J. M. Lee, K. Cai, and H. Yang,Appl. Phys. Rev. 5, 031107 (2018).
  21. 21. A. Meo, C. E. Cronshaw, S. Jenkins, A. Lees, and R. F. L. Evans, J. Phys. Condens. Matter. 35, 025801 (2023).
  22. 22. A. A. Stashkevich, Изв. высших учебных заведений России. Радиоэлектроника [J. of the Russian Universities. Radioelectronics] 22, 45 (2019).
  23. 23. M. I. Dyakonov, Phys. Rev. Lett. 99, 126601 (2007).
  24. 24. S. Velez, V. N. Golovach, A. Bedoya-Pinto, M.Isasa, E. Sagasta, M. Abadia, C. Rogero, L. E. Hueso, F. S. Bergeret, and F. Casanova, Phys. Rev. Lett. 116, 016603 (2016).
  25. 25. H. Wu, X. Zhang, C. H. Wan, B. S. Tao, L. Huang,W. J. Kong, and X. F. Han, Phys. Rev. B 94, 174407 (2016).
  26. 26. J. Li, A. H. Comstock, D. Sun, and X. Xu, Phys.Rev. B 106, 184420 (2022).
  27. 27. В. В. Устинов, И. А. Ясюлевич, Физика Металлов и Металловедение 121, 257 (2020).
  28. 28. V. V. Ustinov and I. A. Yasyulevich, Phys. Rev. B102, 134431 (2020).
  29. 29. В. В. Окулов, В. В. Устинов, Физика Металлов и Металловедение 44, 43 (1977).
  30. 30. В. В. Устинов, ТМФ 44, 387 (1980).
  31. 31. J. D. Zuo, Y. Q. Wang, K. Wu, J. Y. Zhang, G.Liu, and J. Sun, Scr. Mater. 212, 114582 (2022).
  32. 32. M. Magnuson, G. Greczynski, F. Eriksson, L.Hultman, and H. Hogberg, Appl. Surf. Sci. 470, 607 (2019).
  33. 33. E. A. I. Ellis, M. Chmielus, and S. P. Baker, Acta.Mater. 150, 317 (2018).
  34. 34. R. Yu, B. F. Miao, L. Sun, Q. Liu, J. Du, P.Omelchenko, B. Heinrich, M. Wu, and H. F. Ding, Phys. Rev. Mater. 2, 074406 (2018).
  35. 35. D. Qu, S. Y. Huang, B. F. Miao, S. X. Huang, and C. L. Chien, Phys. Rev. B 89, 140407 (2014).
  36. 36. B. M. S. Bist and O. N. Srivastava, Thin SolidFilms 18, 71 (1973).
  37. 37. P. A. Lee and T. V. Ramakrishnan, Rev. Mod.Phys. 57, 287 (1985).
  38. 38. J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).
  39. 39. N. Schwartz, W. A. Reed, P. Polash, and M. H.Read, Thin Solid Films 14, 333 (1972).
  40. 40. M. A. Angadi, J. Mater. Sci. 20, 761 (1985).
  41. 41. M. Morota, Y. Niimi, K. Ohnishi, D. H. Wei, T.Tanaka, H. Kontani, T. Kimura, and Y. Otani, Phys. Rev. B 83, 174405 (2011).
  42. 42. C. Fang, C. H. Wan, B. S. Yang, J. Y. Qin, B. S.Tao, H. Wu, X. Zhang, X. F. Han, A. Hoffmann, X. M. Liu, and Z. M. Jin, Phys. Rev. B 96, 134421 (2017).
  43. 43. Y. Saito, N. Tezuka, S. Ikeda, and T. Endoh, AIPAdv. 11, 025007 (2021).
  44. 44. C. Hahn, G. de Loubens, O. Klein, M. Viret, V.V. Naletov, and J. Ben Youssef, Phys. Rev. B 87, 174417 (2013).
  45. 45. Y. Wang, P. Deorani, X. Qiu, J. H. Kwon, and H.Yang, Appl. Phys. Lett. 105, 152412 (2014).
  46. 46. J. T. Brangham, K.-Y. Meng, A. S. Yang, J. C.Gallagher, B. D. Esser, S. P. White, S. Yu, D. W. McComb, P. C. Hammel, and F. Yang, Phys. Rev. B 94, 054418 (2016).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library