RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

NANOCRYSTAL SHAPE ANISOTROPY DETERMINATION USING EXAFS

PII
10.31857/S0044451024010085-1
DOI
10.31857/S0044451024010085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 165 / Issue number 1
Pages
73-88
Abstract
The problem of non-stationary vapor-liquid nucleation is solved at a constant number of particles and a fixed cooling rate. An analytical approach to solving kinetic equations is developed, which correctly takes into account both the dependence of the work of cluster formation on its size and the non-ideality of the condensing vapor. Comparison with a similar approach based on the classical model reveals qualitative differences in the results. To assess the correctness of various approaches, simulation of the process under consideration was performed using the molecular dynamics method, the results of which are in qualitative and quantitative agreement with the proposed analytical model and are in much worse agreement with other approaches. Estimates for silicon oxide nucleation indicate that the significant difference between the equation of state of condensing vapor and the ideal gas equation may be its universal property.
Keywords
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
96

References

  1. 1. V. E. Bondybey, J. H. English, J. Chem. Phys. 74, 6978 (1981).
  2. 2. T. Masubuchi, J. F. Eckhard, K. Lange et al, J.Chem. Phys. 89, 023104 (2018).
  3. 3. S. I. Anisimov, B. S. Luk’yanchuk, Phys. Usp. 45, 293 (2002).
  4. 4. B. Chimier, V. T. Tikhonchuk, Phys. Rev. B 79, 184107 (2009).
  5. 5. M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013).
  6. 6. Н. А. Иногамов, В. В. Жаховский, В. А. Хохлов,ЖЭТФ 154, 92 (2018).
  7. 7. Ю. П. Райзер, ЖЭТФ 37, 1741 (1959).
  8. 8. Я. Б. Зельдович, ЖЭТФ 12, 525 (1942).
  9. 9. M. Volmer, A. Weber, Z. Phys. Chem. 199, 277 (1926).
  10. 10. R. Becker, W. D¨oring, Ann. Phys. 416, 719 (1935).
  11. 11. J. H. ter Horst, D. Kashchiev, J. Chem. Phys. 123, 114507 (2005).
  12. 12. E. N. Chesnokov, L. N. Krasnoperov, J. Chem. Phys. 126, 144504 (2007).
  13. 13. M. Horsch, J. Vrabec, H. Hasse, Phys. Rev. E 78, 011603 (2008).
  14. 14. I. Napari, J. Julin, H. Vehkam¨aki, J. Chem. Phys.133, 154503 (2010).
  15. 15. A. S. Abyzov, J. W. P. Schmelzer, A. A. Kovalchuket al, J. Non-Cryst. Solids 356, 2915 (2010).
  16. 16. G. Wilemski, J. Chem. Phys. 103, 1119 (1995).
  17. 17. R. H. Heist, H. He, J. Chem. Phys. 23, 781 (1994).
  18. 18. E. Ruckenstein, Y. S. Djikaev, Adv. Colloid InterfaceSci. 118, 51 (2005).
  19. 19. J. D. Gunton, J. Stat. Phys. 95, 903 (1999).
  20. 20. D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).
  21. 21. D. I. Zhukhovitskii, D. I. J. Chem. Phys. 144, 184701 (2016).
  22. 22. D. I. Zhukhovitskii, J. Chem. Phys. 110, 7770 (1999).
  23. 23. Д. И. Жуховицкий, ЖЭТФ 109, 839 (1996).
  24. 24. Д. И. Жуховицкий, ЖЭТФ 113, 181 (1998).
  25. 25. Д. И. Жуховицкий, ЖЭТФ 121, 396 (2002).
  26. 26. D. I. Zhukhovitskii, J. Chem. Phys. 142, 164704 (2015).
  27. 27. D. I. Zhukhovitskii, V. V. Zhakhovsky, J. Chem.Phys. 152, 224705 (2020).
  28. 28. P. R. ten Wolde, D. Frenkel, J. Chem. Phys. 109, 9901 (1998).
  29. 29. S. Toxvaerd, J. Chem. Phys. 119, 10764 (2003).
  30. 30. K. K. Tanaka, K. Kawamura, H. Tanaka et al, J.Chem. Phys. 122, 184514 (2005).
  31. 31. J. Wedekind, J. W¨olk, D. Reguera et al, J. Chem.Phys. 127, 154515 (2007).
  32. 32. K. K. Tanaka, H. Tanaka, T. Yamamoto et al, J.Chem. Phys. 134, 204313 (2011).
  33. 33. I. Napari, J. Julin, H. Vehkam¨aki, J. Chem. Phys.131, 244511 (2009).
  34. 34. V. G. Baidakov, A. O. Tipeev, K. S. Bobrov et al, J.Chem. Phys. 132, 234505 (2010).
  35. 35. J. Diemand, R. Ang´elil, K. K. Tanaka et al, J. Chem.Phys. 139, 074309 (2013).
  36. 36. K. K. Tanaka, J. Diemand, R. Ang´elil et al, J. Chem.Phys. 140, 194310 (2014).
  37. 37. R. Ang´elil, J. Diemand, K. K. Tanaka et al, J. Chem.Phys. 143, 064507 (2015).
  38. 38. K. J. Oh, X. C. Zeng, J. Chem. Phys. 114, 2681 (2001).
  39. 39. J. Merikanto, H. Vehkam¨aki, E. Zapadinsky, J. Chem.Phys. 121, 914 (2004).
  40. 40. A. V. Neimark, A. Vishnyakov, J. Phys. Chem. 109, 5962 (2005).
  41. 41. J. Merikanto, E. Zapadinsky, H. Vehkam¨aki, J. Chem.Phys. 125, 084503 (2006).
  42. 42. Д. И. Жуховицкий, А. Г. Храпак, И. Т. Якубов,ТВТ 21, 982 (1983).
  43. 43. Д. И. Жуховицкий, А. Г. Храпак, И. Т. Якубов,ТВТ 21, 1197 (1983).
  44. 44. J. L. Katz, M. Blander, J. Colloid Interface Sci. 42, 496 (1973).
  45. 45. A. Laaksonen, I. J. Ford„ M. Kulmala, Phys. Rev. E49, 5517 (1994).
  46. 46. W. Band, J. Chem. Phys. 7, 324 (1939).
  47. 47. W. Band, J. Chem. Phys. 7, 927 (1939).
  48. 48. Д. И. Жуховицкий, Журнал физической химии,67, 1962 (1993).
  49. 49. A. P. Thompson, H. M. Aktulga, R. Berger et al.,Comp. Phys. Comm. 271, 108171 (2022).
  50. 50. S. I. Anisimov, D. O. Dunikov, V. V. Zhakhovskii etal, J. Chem. Phys. 110, 8722 (1999).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library