- PII
- 10.31857/S0044451024010073-1
- DOI
- 10.31857/S0044451024010073
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 165 / Issue number 1
- Pages
- 65-72
- Abstract
- Using the set of the nanocrystals (NC) having the rectangular parallelepiped shape and a cubic crystal structure of the zinc-blende type as model system, the possibilities of determining the NC shape anisotropy using the polarized EXAFS technique were demonstrated. It was shown that the effective value of the coordination number of absorbing atoms in an NC with anisotropic shape depends on its size and the orientation of the X-ray radiation polarization vector relative to the NC surface. The effective values of the coordination numbers of the first coordination sphere of atoms in NCs having different size and surface composition were modeled. Taking into account the influence of the experimental error of the EXAFS method the possibilities of the model applicability for analysis of the real systems with NC were analyzed.
- Keywords
- Nanocrystals EXAFS Shape anisotropy
- Date of publication
- 15.01.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 87
References
- 1. M. A. Cotta, ACS Appl. Nano Mater. 3, 4920 (2020).
- 2. D. S. Abramkin and V. V. Atuchin, Nanomaterials12, 3794 (2022).
- 3. W. C. Chao, T. H. Chiang, Y. C. Liu, Z. X. Huang,C. C. Liao, C. H. Chu, C. H. Wang, H. W. Tseng, W. Y. Hung, and P. T. Chou, Commun. Mater. 2, 96 (2021).
- 4. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal,D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
- 5. E. S. Smotkin, C. Lee, A. J. Bard, A. Campion,M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Chem. Phys. Lett. 152, 265 (1988).
- 6. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
- 7. P. Facci and M. P. Montana, Solid State Commun.108, 5 (1998).
- 8. A. Aleksandrov, V. G. Mansurov, and K. S. Zhuravlev, Physica E 75, 309 (2016).
- 9. V. G. Mansurov, Yu. G. Galittsyn, A. Yu. Nikitin,K. S. Zhuravlev, and Ph. Vennegues, Phys. Stat. Sol. (c) 3, 1548 (2006).
- 10. S. Hovmoller, X. Zou, and T. E. Weirich, Adv. ImaginElectron Phys. 123, 257 (2002).
- 11. A. V. Nabok, A. K. Ray, and A. K. Hassan, J. Appl.Phys. 88, 1333 (2000).
- 12. T. M. Usher, D. Olds, J. Liku, and K. Page, ActaCryst. A74, 322 (2018).
- 13. C. L. Farrow, C. Shi, P. Juhas, X. Peng, and S. J. L. Billinge, J. Appl. Crystallogr, 47, 561 (2014).
- 14. C. Shi, E. L. Redmond, A. Mazaheripour, P. Juhas,T. F. Fuller, and S. J. L. Billinge, J. Phys. Chem. C 117, 7226 (2013).
- 15. M. Khalkhali, Q. Liu, H. Zeng, and H. Zhang, Sci.Rep. 5, 14267 (2015).
- 16. A. Jentys, Phys. Chem. Chem. Phys. 1, 4059 (1999).
- 17. G. Agostini, A. Piovano, L. Bertinetti, R. Pellegrini,G. Leofanti, E. Groppo, and C. Lamberti, J. Phys. Chem. C 118, 4085, (2014).
- 18. R. B. Gregor and F. W. Lytle, J. Catal. 63, 476, (1980).
- 19. M. Shirai, T. Inoue, H. Onishi, K. Asakura, and Y. Iwasawa, J. Catal. 145, 159 (1994).
- 20. C. Giansante and I. Infante, J. Phys. Chem. Lett. 8, 8209 (2017).
- 21. C. J. P. Clark and W. R. Flavell, Chem. Rec. 18, 1 (2018).
- 22. N. S. Marinkovic, K. Sasaki, and R. R. Adzic, J.Electrochem. Soc. 165, J3222 (2018).
- 23. D. Kido and K. Asakura, Acc. Mater. Surf. Res. 5, 148 (2020).