- PII
- 10.31857/S0044451023120143-1
- DOI
- 10.31857/S0044451023120143
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 164 / Issue number 6
- Pages
- 1008-1021
- Abstract
- The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.
- Keywords
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. C. Bartolozzi, G. Indiveri, and E. Donati, Embodied Neuromorphic Intelligence, Naturecommunications 13, 1 (2022).
- 2. C. D. Schuman, S. R. Kulkarni, M. Parsa et al., Opportunities for Neuromorphic Computing Algorithms and Applications, Nature Computational Science 2, 10 (2022).
- 3. B. J. Shastri, A. N. Tait, T. Ferreira de Lima et al., Photonics for Arti cial Intelligence and Neuromorphic Computing, Nature Photonics 15, 102 (2021).
- 4. M. Davies, A. Wild, G. Orchard et al., Advancing Neuromorphic Computing with Loihi: A Survey of Results and Outlook, Proceedings of the IEEE 109, 911 (2021).
- 5. D. Markovi'c, A. Mizrahi, D. Querlioz et al., Physics for Neuromorphic Computing, Nature Reviews Physics 2, 499 (2020).
- 6. D. Markovi'c and J. Grollier, Quantum Neuromorphic Computing, Applied Physics Letters 117, 150501 (2020).
- 7. Y. van De Burgt, A. Melianas, S. T. Keene et al., Organic Electronics for Neuromorphic Computing, Nature Electronics 1, 386 (2018).
- 8. C. D. Schuman, T. E. Potok, R. M. Patton et al., A Survey of Neuromorphic Computing and Neural Networks in Hardware, arXiv preprint arXiv:1705.06963 (2017).
- 9. G. W. Burr, R. M. Shelby, A. Sebastian et al., Neuromorphic Computing Using Non-volatile Memory, Advances in Physics: X, 2, 89 (2017).
- 10. Furber, S. Large-scale neuromorphic computing systems, Journal of neural engineering 13, 051001 (2016).
- 11. S. K. Esser, R. Appuswamy, P. Merolla et al., Backpropagation for Energy-E cient Neuromorphic Computing, Advances in neural information processing systems 28 (2015).
- 12. H. Markram, E. Muller, S. Ramaswamy et al., Reconstruction and Simulation of Neocortical Microcircuitry, Cell 163, 456 (2015).
- 13. D. Monroe, Neuromorphic Computing Gets Ready for the (Really) Big Time, Communications of the ACM 57, 13 (2014).
- 14. https://videocardz.com/newz/tesla-d1-chip-features-50-billion-transistors-scales-up-to-1-1-exa ops-with-exapod
- 15. R. Irwin, S. Dimitriadis, J. He et al., Chemformer: a Pretrained Transformer for Computational Chemistry, Machine Learning: Science and Technology 3, 015022 (2022).
- 16. H. Tao, T. Wu, M. Aldeghi et al., Nanoparticle Synthesis Assisted by Machine Learning, Nature Reviews Materials 6, 701 (2021).
- 17. G. R. Khattak, S. Vallecorsa, F. Carminati et al., High Energy Physics Calorimeter Detector Simulation Using Generative Adversarial Networks with Domain Related Constraints, IEEE Access 9, 108899 (2021).
- 18. Y. Meurice, J. C. Osborn, R. Sakai et al., Tensor Networks for High Energy Physics: Contribution to Snowmass 2021, arXiv preprint arXiv:2203.04902 (2022).
- 19. R. Wang and R. Yu, Physics-guided Deep Learning for Dynamical Systems: A Survey, arXiv preprint arXiv:2107.01272 (2021).
- 20. J. Gilman, L. Walls, L. Bandiera et al., Statistical Design of Experiments for Synthetic Biology, ACS Synthetic Biology 10, 1 (2021).
- 21. Y. Ren, T. Chakraborty, S. Doijad et al., Prediction of Antimicrobial Resistance Based on Whole- Genome Sequencing and Machine Learning, Bioinformatics 38, 325 (2022).
- 22. J. Gangiredla, H. Rand, D. Benisatto et al., GalaxyTrakr: a Distributed Analysis Tool for Public Health Whole Genome Sequence Data Accessible to Non-bioinformaticians, BMC genomics 22, 1 (2021).
- 23. https://irds.ieee.org/editions/2022/more-moore
- 24. https://irds.ieee.org/editions/2022/irds%E2%84%A2-2022-cryogenic-electronics-and-quantum-information-processing
- 25. C. E. Leiserson, N. C. Thompson, J. S. Emer et al., There's Plenty of Room at the Top: What Will Drive Computer Performance after Moore's Law? Science 368, eaam9744 (2020).
- 26. T. N. Theis and H. S. P. Wong, The End of Moore's Law: A New Beginning for Information Technology, Computing in Science Engineering 19, 41 (2017).
- 27. I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy et al., Beyond Moore's Technologies: Operation Principles of a Superconductor Alternative, Beilstein Journal of Nanotechnology 8, 2689 (2017).
- 28. https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law
- 29. M. Campbell, Computational Acceleration: O ense in Depth, Computer 54, 55 (2021).
- 30. https://www.techpowerup.com/284936/intel-rebadges-10nm-enhanced-super n-node-as-intel-7-invents-other-creative-node-names?cp=2
- 31. O. A. Mukhanov, V. K. Semenov, and K. K. Likharev, Ultimate Performance of RSFQ Logic Circuits, IEEE Transactions on Magnetics 23, 759 (1987).
- 32. D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, Zero Static Power Dissipation Biasing of RSFQ Circuits, IEEE Transactions on Applied Superconductivity 21, 776 (2011).
- 33. O. A. Mukhanov, Energy-E cient Single Flux Quantum Technology, IEEE Transactions on Applied Superconductivity, 21, 760 (2011).
- 34. M. H. Volkmann, A. Sahu, C. J. Fourie et al., Implementation of Energy E cient Single Flux Quantum Digital Circuits with Sub-aJ/bit Operation, Superconductor Science and Technology 26, 015002 (2012).
- 35. M. Tanaka, M. Ito, A. Kitayama et al., 18-GHz, 4.0- aJ/bit Operation of Ultra-Low-Energy Rapid Single- Flux-Quantum Shift Registers, Japanese Journal of Applied Physics 51, 053102 (2012).
- 36. Q. P. Herr, A. Y. Herr, O. T. Oberg et al., Ultralow-power Superconductor Logic, Journal of Applied Physics 109, 103903 (2011).
- 37. A. F. Kirichenko, I. V. Vernik, J. A. Vivalda et al., ERSFQ 8-bit Parallel Adders as a Process Benchmark, IEEE Transactions on Applied Superconductivity 25, 1 (2014).
- 38. A. F. Kirichenko, I. V. Vernik, O. A. Mukhanov et al., ERSFQ 4-to-16 Decoder for Energy-E cient RAM, IEEE Transactions on Applied Superconductivity 25, 1 (2014).
- 39. I. V. Vernik, A. F. Kirichenko, O. A. Mukhanov et al., Energy-E cient and Compact ERSFQ Decoder for Cryogenic RAM, IEEE Transactions on Applied Superconductivity 27, 1 (2016).
- 40. N. K. Katam, O. Mukhanov, and M. Pedram, Simulation Analysis and Energy-Saving Techniques for ERSFQ Circuits, IEEE Transactions on Applied Superconductivity 29, 1 (2019).
- 41. M. A. Manheimer, Cryogenic Computing Complexity Program: Phase 1 Introduction, IEEE Transactions on Applied Superconductivity 25, 1 (2015).
- 42. A. F. Kirichenko, I. V. Vernik, M. Y. Kamkar et al., ERSFQ 8-bit Parallel Arithmetic Logic Unit, IEEE Transactions on Applied Superconductivity 29, 1 (2019).
- 43. N. Takeuchi, D. Ozawa, Y. Yamanashi et al., An Adiabatic Quantum Flux Parametron as an Ultralow-power Logic Device, Superconductor Science and Technology 26, 035010 (2013).
- 44. V. Semenov, G. Danilov, and D. Averin, Negative- Inductance SQUID as the Basic Element of Reversible Josephson-Junction Circuits, IEEE Transactions on Applied Superconductivity 13, 938 (2003).
- 45. V. Semenov, G. Danilov, and D. Averin, Classical and Quantum Operation Modes of the Reversible Josephson-Junction Logic Circuits, IEEE Transactions on Applied Superconductivity 17, 455 (2007).
- 46. И. И. Соловьев, Г. С. Хисматуллин, Н. В. Кленов и др., π-контакты в ячейках адиабатической сверхпроводниковой логики, Радиотехника и электроника 67, 1232 (2022).
- 47. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, Adiabatic Quantum-Flux-Parametron Cell Library Adopting Minimalist Design, Journal of Applied Physics 117, 173912 (2015).
- 48. Q. Xu, Y. Yamanashi, C. L. Ayala et al, Design of an Extremely Energy-E cient Hardware Algorithm Using Adiabatic Superconductor Logic, 2015 15th International Superconductive Electronics Conference (ISEC), Nagoya, Japan (2015), p. 1.
- 49. A. E. Schegolev, N. V. Klenov, I. I. Soloviev et al., Adiabatic Superconducting Cells for Ultra-low-power Arti cial Neural Networks, Beilstein journal of nanotechnology 7, 1397 (2016).
- 50. N. V. Klenov, A. E. Schegolev, I. I. Soloviev et al., Energy E cient Superconducting Neural Networks for High-speed Intellectual Data Processing Systems, IEEE Transactions on Applied Superconductivity 28, 1301006 (2018).
- 51. I. I. Soloviev, A. E. Schegolev, N. V. Klenov et al., Adiabatic Superconducting Arti cial Neural Network: Basic Cells, Journal of Applied Physics 124, 152113 (2018).
- 52. N. V. Klenov, A. V. Kuznetsov, A. E. Schegolev et al., A Neuron Based on a Single Flux Qubit, Low Temperature Physics 45, 769 (2019).
- 53. S. Bakurskiy, M. Kupriyanov, N. V. Klenov et al., Controlling the Proximity in a Co/Nb Multilayer: the Properties of Electronic Transport, Beilstein Journal of Nanotechnology 11, 1336 (2020).
- 54. A. E. Schegolev, N. V. Klenov, I. I. Soloviev et al., Superconducting Neural Networks: from an Idea to Fundamentals and, further, to Application, Nanobiotechnology Reports 16, 811 (2021).
- 55. A. E. Schegolev, N. V. Klenov, I. I. Soloviev et al., Learning Cell for Superconducting Neural Networks, Superconductor Science and Technology 34, 015006 (2021).
- 56. M. Bastrakova, A. Gorchavkina, A. Schegolev et al., Dynamic Processes in a Superconducting Adiabatic Neuron with Non-shunted Josephson Contacts, Symmetry 13, 1735 (2021).
- 57. A. E. Schegolev, N. V. Klenov, S. V. Bakurskiy et al., Tunable Superconducting Neurons for Networks Based on Radial Basis Functions, Beilstein Journal of Nanotechnology 13, 444 (2022).
- 58. M. V. Bastrakova, D. S. Pashin, D. A. Rybin et al., A Superconducting Adiabatic Neuron in a Quantum Regime, Beilstein Journal of Nanotechnology 13, 653 (2022).
- 59. L. N. Kanal, Perceptron. In Encyclopedia of Computer Science John Wiley and Sons: Chichester, UK (2003).
- 60. В. В. Шмидт, Введение в физику сверхпроводников, М.: МЦНМО, Изд. 2-е (2000).
- 61. А. Бароне и Дж. Паттерно, Эффект Джозефсона, Мир, Москва (1984).
- 62. К. К. Лихарев, Введение в динамику джозефсоновских переходов, Наука, Москва (1985).
- 63. Yu. M. Shukrinov, I. R. Rahmonov, K. V. Kulikov et al., Modeling of LC-shunted Intrinsic Josephson Junctions in High-Tc Superconductors, Superconductor Science and Technology 30, 024006 (2017).
- 64. Yu. M. Shukrinov, I. R. Rahmonov, and G. Filatrella, Dependence of the Maximal Superconducting Current on the Resonance Frequency in a Shunted Josephson Junction, Journal of Experimental and Theoretical Physics 125, 781 (2017).
- 65. S. K. Tolpygo, J. L. Mallek, V. Bolkhovsky et al., Progress toward Superconductor Electronics Fabrication Process with Planarized NbN and NbN/Nb Layers, IEEE Transactions on Applied Superconductivity 33, 1 (2023).
- 66. М. С. Шевченко, Л. В. Филиппенко, О. С. Киселев и др., Джозефсоновские туннельные переходы с интегральным СИН-шунтированием, Физика твердого тела 64, 1223 (2022).
- 67. M. S. Shevchenko, A. A. Atepalikhin, F. V. Khan et al., Shunted Josephson Junctions and Optimization of Niobium Integrated Matching Circuits, IEEE Transactions on Applied Superconductivity 32, 1100205 (2022).
- 68. Gubin, K. Il'in, S. Vitusevich et al., Dependence of Magnetic Penetration Depth on the Thickness of Superconducting Nb Thin Films, Physical Review B 72, 064503 (2005).