RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Measurement Sensitivity of the Optically Detected Magnetic Resonance for a Single NV– Center in Diamond

PII
10.31857/S0044451023120039-1
DOI
10.31857/S0044451023120039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 6
Pages
896-905
Abstract
The spectra of the optically detected magnetic resonance for single NV– centers have been experimentally studied in two solid-state samples in the range of hyperfine interactions between the electron spin and the nitrogen nucleus spin in the same NV– center. This study has been aimed at reaching a maximal microwave frequency resolution in the experimental setup used. For measurements, two low-nitrogen (no higher than 50 ppb) diamond single-crystal samples have been grown. Measured time T*2 of the spin decoherence in NV– centers was about 2 μs in one sample and 20 μs in the other. For both samples, the spectrum of the optically detected magnetic resonance for the hyperfine splitting of a single NV– center and 14N atom has been taken and investigated. The resolution in these samples has been estimated at a level of 3.5 and 0.18 MHz, respectively. It has been noted that the resolution of the spectrum improves with increasing time T*2 of the spin decoherence of the single NV– center.
Keywords
Date of publication
15.12.2023
Year of publication
2023
Number of purchasers
0
Views
29

References

  1. 1. J. Wrachtrup and F. Jelezro, J. Phys.: Condens. Matter 18, 807 (2006).
  2. 2. T. Shr¨oder, F. G¨adeke, M. J. Banholzer, and O. Benson, New J. Phys. 13, 055017 (2011).
  3. 3. J. Joo and E. Ginossar, Sci. Rep. 6, 26338 (2016).
  4. 4. J. L. Webb, J. D. Clement, L. Troise et al., Appl. Phys. Lett. 114, 231103 (2019).
  5. 5. R. L. Patel, L. Q. Zhou, A. C. Frangeskou et al., Phys. Rev. Appl. 14, 044058 (2020).
  6. 6. L. Rodnin, J.-P. Tetienne, T. Hingant et al., Rep. Prog. Phys. 77, 056503 (2014).
  7. 7. J. F. Barry, J. M. Schloss, E. Bauch et al., Rev. Mod. Phys. 92, 015004 (2020).
  8. 8. A. Dreau, M. Lesik, L. Rondin et al., Phys. Rev. B 84, 195204 (2011).
  9. 9. L. Robdelo, H. Bernien, I. V. Weperen, R. Hanson et al., Phys. Rev. Lett. 105, 177403 (2010).
  10. 10. W. E. Moerner, W. E. Moerner, M. Orrit, and U. E. Wild, Single Molecule Optical Detection, Imaging and Spectroscopy, Wiley-VCH, Weinheim (1996).
  11. 11. А. П. Низовцев, Н. С. Кукин, А. Р. Мурадова и др., ЖПС 89, 807 (2022).
  12. 12. A. P. Nizovtsev, S. Ya. Kilin, A. L. Pushkarchuk et al., New J. Phys. 16, 083014 (2014).
  13. 13. A. P. Nizovtsev, S. Ya. Kilin, A. L. Pushkarchuk et al., New J. Phys. 20, 023022 (2018).
  14. 14. Yu. L. Raikher and V. I. Stepanov, Appl. Phys. Lett. 105, 063111 (2015).
  15. 15. O. R.Rubinas, V. V. Vorobyov, V. V. Soshenko et al., J. Phys.Commun. 2, 115003 (2018).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library