RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

An Optical Analog for a Rotating Binary Bose—Einstein Condensate

PII
10.31857/S0044451023110160-1
DOI
10.31857/S0044451023110160
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 5
Pages
863-869
Abstract
Coupled nonlinear Schrödinger equations for paraxial optics with two circular polarizations of light in a defocusing Kerr medium with anomalous dispersion coincide in form with the Gross–Pitaevskii equations for a binary Bose—Einstein condensate (BEC) of cold atoms in the phase separation regime. In this case, the helical symmetry of an optical waveguide corresponds to rotation of the transverse potential confining the BEC. The “centrifugal force” considerably affects the propagation of a light wave in such a system. Numerical experiments for a waveguide with an elliptical cross section have revealed characteristic structures consisting of quantized vortices and domain walls between two polarizations, which have not been observed earlier in optics.
Keywords
Date of publication
15.11.2023
Year of publication
2023
Number of purchasers
0
Views
40

References

  1. 1. Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, 1st ed., Academic Press, California, USA (2003).
  2. 2. V. E. Zakharov and S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Springer-Verlag, Berlin, Heidelberg (1999).
  3. 3. B. A. Malomed, Multidimensional Solitons, AIP Publishing (online), Melville, N. Y. (2022), https://doi.org/10.1063/9780735425118
  4. 4. F. Baronio, S. Wabnitz, and Yu. Kodama, Phys. Rev. Lett. 116, 173901 (2016).
  5. 5. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonz'alez, The Defocusing Nonlinear Schr¨odinger Equation: From Dark Solitons to Vortices and Vortex Rings, SIAM, Philadelphia (2015).
  6. 6. А. Л. Берхоер, В. Е. Захаров, ЖЭТФ 58, 903 (1970).
  7. 7. Tin-Lun Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).
  8. 8. H. Pu and N. P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998).
  9. 9. B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).
  10. 10. S. Coen and M. Haelterman, Phys. Rev. Lett. 87, 140401 (2001).
  11. 11. G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
  12. 12. E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998).
  13. 13. P. Ao and S. T. Chui, Phys. Rev. A 58, 4836 (1998).
  14. 14. M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 3389 (1994).
  15. 15. M. Haelterman and A. P. Sheppard, Phys. Rev. E 49, 4512 (1994).
  16. 16. A. P. Sheppard and M. Haelterman, Opt. Lett. 19, 859 (1994).
  17. 17. Yu. S. Kivhsar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
  18. 18. N. Dror, B. A. Malomed, and J. Zeng, Phys. Rev. E 84, 046602 (2011).
  19. 19. A. H. Carlsson, J. N. Malmberg, D. Anderson, M. Lisak, E. A. Ostrovskaya, T. J. Alexander, and Yu. S. Kivshar, Opt. Lett. 25, 660 (2000).
  20. 20. A. S. Desyatnikov, L. Torner, and Yu. S. Kivshar, Progr. Opt. 47, 291 (2005).
  21. 21. В. П. Рубан, Письма в ЖЭТФ 117, 292 (2023).
  22. 22. В. П. Рубан, Письма в ЖЭТФ 117, 590 (2023).
  23. 23. B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008).
  24. 24. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 033602 (2011).
  25. 25. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, and M. Tsubota, Phys. Rev. B 81, 094517 (2010).
  26. 26. N. Suzuki, H. Takeuchi, K. Kasamatsu, M. Tsubota, and H. Saito, Phys. Rev. A 82, 063604 (2010).
  27. 27. H. Kokubo, K. Kasamatsu, and H. Takeuchi, Phys. Rev. A 104, 023312 (2021).
  28. 28. K. Sasaki, N. Suzuki, D. Akamatsu, and H. Saito, Phys. Rev. A 80, 063611 (2009).
  29. 29. S. Gautam and D. Angom, Phys. Rev. A 81, 053616 (2010).
  30. 30. T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito, Phys. Rev. A 85, 013602 (2012).
  31. 31. K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. A 83, 053606 (2011).
  32. 32. D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, and M. Marklund, Phys. Rev. A 86, 023614 (2012).
  33. 33. D. K. Maity, K. Mukherjee, S. I. Mistakidis, S. Das, P. G. Kevrekidis, S. Majumder, and P. Schmelcher, Phys. Rev. A 102, 033320 (2020).
  34. 34. K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91, 150406 (2003).
  35. 35. K. Kasamatsu and M. Tsubota, Phys. Rev. A 79, 023606 (2009).
  36. 36. P. Mason and A. Aftalion, Phys. Rev. A 84, 033611 (2011).
  37. 37. K. Kasamatsu, H. Takeuchi, M. Tsubota, and M. Nitta, Phys. Rev. A 88, 013620 (2013).
  38. 38. В. П. Рубан, Письма в ЖЭТФ 113, 848 (2021).
  39. 39. В. П. Рубан, ЖЭТФ 160, 912 (2021).
  40. 40. K. J. H. Law, P. G. Kevrekidis, and L. S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010)
  41. 41. Erratum, Phys. Rev. Lett. 106, 199903 (2011).
  42. 42. M. Pola, J. Stockhofe, P. Schmelcher, and P. G. Kevrekidis, Phys. Rev. A 86, 053601 (2012).
  43. 43. S. Hayashi, M. Tsubota, and H. Takeuchi, Phys. Rev. A 87, 063628 (2013).
  44. 44. G. C. Katsimiga, P. G. Kevrekidis, B. Prinari, G. Biondini, and P. Schmelcher, Phys. Rev. A 97, 043623 (2018).
  45. 45. A. Richaud, V. Penna, R. Mayol, and M. Guilleumas, Phys. Rev. A 101, 013630 (2020).
  46. 46. A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021).
  47. 47. В. П. Рубан, Письма в ЖЭТФ 113, 539 (2021).
  48. 48. В. П. Рубан, Письма в ЖЭТФ 115, 450 (2022).
  49. 49. V. P.Ruban, W. Wang, C. Ticknor, and P. G. Kevrekidis, Phys. Rev. A 105, 013319 (2022).
  50. 50. X. Liu, B. Zhou, H. Guo, and M. Bache, Opt. Lett. 40, 3798 (2015).
  51. 51. X. Liu and M. Bache, Opt. Lett. 40, 4257 (2015).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library