RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Satellites of the Dipole-Forbidden Transitions to the Low-Lying 2S1/2 and 2D3/2,5/2 Excited States of K, Rb, and Cs Atoms in the Spectra of Gas-Phase Mixtures with CF4

PII
10.31857/S004445102309002X-1
DOI
10.31857/S004445102309002X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 3
Pages
328-339
Abstract
The luminescence excitation spectra of the D1 resonance line of atoms K, Rb, and Cs in gas mixtures with CF4 are found to contain satellite transitions, which correspond to the transition of an atom to the states (n – 1)d 2D3/2,5/2 and (n + 1)s 2S1/2, where n = 4, 5, and 6 for K, Rb, and Cs, respectively, with the simultaneous excitation of CF4 molecule vibrations at the IR active mode frequency ν3 with a quantum energy of 1283 cm–1. These satellite transitions are A(ns 2S1/2) + CF43 = 0) + hν → A((n – 1)d 2D3/2,5/2) + CF43 = 1) and A(ns 2S1/2) + CF43 = 0) + hν → A((n + 1)s 2S1/2) + CF43 = 1), where A = K, Rb, and Cs. The appearance of an optical coupling between the upper and lower states of these asymptotically (at → ∞) forbidden transitions is shown to be caused by the interaction of the dipole moment of the ν3 = 1 ↔ ν3 = 0 vibrational transition in the CF4 molecule with the dipole moments of the electronic transitions np 2P1/2,3/2 ↔ (n – 1)d 2D3/2,5/2 and np 2P1/2,3/2 ↔ (n + 1)s 2S1/2 in an alkali metal atom; as a result of this interaction, the upper state of the satellite transition acquires admixtures of the A(np 2P1/2,3/2)CF43 = 0) resonance states.
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Л. И. Гудзенко, С. И. Яковленко, ЖЭТФ 62, 1686 (1972).
  2. 2. J. Szudy and W. E. Baylis, Phys. Rep. 266, 127 (1996).
  3. 3. R. Hotop and R. Niemax, J. Phys. B 13, L93 (1980).
  4. 4. J. C. White, G. A. Zdasiuk, J. F. Young, and S. E. Harris, Opt. Lett. 4, 137 (1979).
  5. 5. V. A. Alekseev, A. A. Pastor, A. S. Pazgalev, P. A. Petrov, P. Yu. Serdobintsev, and T. A. Vartanyan, JQSRT 258, 107339 (2021).
  6. 6. В. А. Алексеев, Н. К. Бибинов, И. П. Виноградов, Опт. Спектр. 73, 269 (1992).
  7. 7. В. А. Алексеев, А. А. Пастор, П. Ю. Сердобинцев, Т. А. Вартанян, Письма ЖЭТФ 114, 60 (2021).
  8. 8. V. A. Alekseev and N. Schwentner, Chem. Phys. Lett. 463, 47 (2008).
  9. 9. V. A. Alekseev, J. Grosser, O. Ho mann, and F. Rebentrost, J. Chem. Phys. 129, 201102 (2008).
  10. 10. G. A. Pitz and M. D. Anderson, Appl. Phys. Rev. 4, 041101 (2017).
  11. 11. M. Carlos, O. Gruson, C. Richard, V. Boudon, M. Rotger, X. Thomas, C. Maul, C. Sydow, A. Domanskaya, R. Georges, P. Soulard, O. Pirali, M. Goubet, P. Asselin, and T. R. Huet, JQSRT 201, 75 (2017).
  12. 12. G. Moe, A. C. Tam, and W. Happer, Phys. Rev. A 14, 349 (1976).
  13. 13. V. Dubourg, M. Ferray, J. P. Visticot, and B. Sayer, J. Phys. B 19, 1165 (1986).
  14. 14. E. J. Breford аnd F. Engelke, Chem. Phys. Lett. 75, 132 (1980).
  15. 15. D. Edvardsson, S. Lunell, and Ch. M. Marian, Mol. Phys. 101, 2381 (2003).
  16. 16. Y. Lee, S. Lee, and B. Kim, J. Phys. Chem. A 112, 6893 (2008).
  17. 17. M. D. Rotondaro and G. P. Perram, Phys. Rev. A 57, 4045 (1998).
  18. 18. S. Brode, Ch. Kolmel, H. Schi er, and R. Ahlrichs, Z. Phys. Chem. 155, 23 (1987).
  19. 19. В. А. Алексеев, Опт. Спектр. 130, 1343 (2022).
  20. 20. S. E. Harris and J. C. White. IEEE J. Quant. Electron. 12, 972 (1977).
  21. 21. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2020), NIST Atomic Spectra Database (version 5.8) [Online]. Available: https://physics.nist.gov/asd [May 31, 2021]; National Institute of Standards and Technology, Gaithersburg, MD; DOI: https://doi.org/10.18434/T4W30F
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library