- PII
- 10.31857/S0044451023080102-1
- DOI
- 10.31857/S0044451023080102
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 164 / Issue number 2
- Pages
- 241-246
- Abstract
- A quantum algorithm for solving the traveling salesman problem by the quantum phase estimation and quantum search method is considered. An approach is developed that was previously proposed for solving this problem. A quantum register is used to encode the eigenstates of a unitary operator whose phase determines the length of each possible route. The quantum phase estimation algorithm is used to estimate the length of a route. Then, to find the minimum route length, the measured values of length are encoded into the states of the second quantum register, and the search for the optimal route is carried out using a modified Grover algorithm. Numerical simulation of the proposed quantum algorithm is carried out using the Qiskit library for one and two iterations of the modified Grover algorithm.
- Keywords
- Date of publication
- 15.08.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 40
References
- 1. B. Mott, J. Job, J. R. Vlimant, D. Lidar, and M. Spiropulu, Nature 550, 375 (2017).
- 2. F. Arute, K. Arya, R. Babbush et al., Nature 574, 505 (2019).
- 3. Y. Wu, W-S. Bao, S. Cao et al., Phys. Rev. Lett. 127, 180501 (2021).
- 4. H.-S. Zhong, Y-H. Deng, J. Qin et al., Phys. Rev. Lett. 127, 180502 (2021).
- 5. T. M. Graham, Y. Song, J. Scott et al., Nature 604, 457 (2022).
- 6. C. Noel, P. Niroula, D. Zhu et al., Nat. Phys. 18, 760 (2022).
- 7. K. Srinivasan, S. Satyajit, B. K. Behera, and P. K. Panigrahi, arXiv:1805.10928 (2018).
- 8. https://qiskit.org/textbook/ch-paper-implementations/tsp.html
- 9. R. Botez, I.-A. Ivanciu, I. Marian, and V. Dobrota, Proc. Rom. Acad. - Math. Phys. Tech. Sci. Inf. Sci. 22(41), 91 (2021).
- 10. J. Zhu, Y. Gao, H. Wang et al., arXiv:2212.02735 (2022).
- 11. G. L. Long, Phys. Rev. A 64, 022307 (2001).
- 12. Y. Chen, S. Wei, X. Gao et al., arXiv:1908.07943 (2019).
- 13. M. Ghosh, N. Dey, D. Mitra, and A. Chakrabarti, IET Quantum Communication 3(1), 13 (2022), DOI 10.1049/qtc2.12023.