RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Scalable Heteronuclear Architecture of Neutral Atoms Based on EIT

PII
10.31857/S0044451023080096-1
DOI
10.31857/S0044451023080096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 2
Pages
230-240
Abstract
Based on our recent paper [arXiv:2206.12176 (2022)], we propose a scalable heteronuclear architecture of parallel implementation of CNOT gates in arrays of alkali-metal neutral atoms for quantum information processing. We considered a scheme where we perform CNOT gates in a parallel manner within the array, while they are performed sequentially between the pairs of neighboring qubits by coherently transporting an array of atoms of one atomic species (ancilla qubits) using an array of mobile optical dipole traps generated by a 2D acousto-optic deflector (AOD). The atoms of the second atomic species (data qubits) are kept in the array of static optical dipole traps generated by spatial light modulator (SLM). The moving ancillas remain in the superposition of their logical ground states without loss of coherence, while their transportation paths avoid overlaps with the spatial positions of data atoms. We numerically optimized the system parameters to achieve the fidelity for parallelly implemented CNOT gates around for the experimentally feasible conditions. Our design can be useful implementation of surface codes for quantum error correction. Renyi entropy and mutual information are also investigated to characterize the gate performance.
Keywords
Date of publication
15.08.2023
Year of publication
2023
Number of purchasers
0
Views
41

References

  1. 1. S. Ebadi, T. T. Wang, H. Levine et al., Nature 595, 227 (2021).
  2. 2. P. Scholl, M. Schuler, H. J. Williams et al., Nature 595, 233 (2021).
  3. 3. T. M. Graham, Y. Song, J. Scott et al., Nature 604, 457 (2022).
  4. 4. I. S. Madjarov, J. P. Covey, A. L. Shaw et al., Nature Physics 16, 857 (2020).
  5. 5. W. H¨ansel, J. Reichel, P. Hommelho, and T. W. H¨ansch, Phys. Rev. Lett. 86, 608 (2001).
  6. 6. J. Beugnon, C. Tuchendler, H. Marion et al., Nature Phys. 3, 696 (2007).
  7. 7. G. T. Hickman and M. Sa man, Phys. Rev. A 101101, 063411 (2020).
  8. 8. D. Bluvstein, H. Levine, G. Semeghini et al., Nature 604, 451 (2022).
  9. 9. K. Singh, S. Anand, A. Pocklington et al., Phys. Rev. X 12, 011040 (2022).
  10. 10. C. Sheng, J. Hou, X. He et al., Phys. Rev. Lett. 128, 083202 (2022).
  11. 11. C. Zhang and M. R. Tarbutt, PRX Quantum 3, 030340 (2022).
  12. 12. T. G. Walker and M. Sa man, Phys. Rev. A 77, 032723 (2008).
  13. 13. I. I. Beterov and M. Sa man, Phys. Rev. A 92, 042710 (2015).
  14. 14. Z. Tao, L. Yu, P. Xu et al., Chin. Phys. Lett. 39, 083701 (2022).
  15. 15. S. Ebadi, A. Keesling, M. Cain et al., Science 376, 1209 (2022).
  16. 16. M. Nguyen, J. Liu, J. Wurtz et al., PRX Quantum 4, 010316 (2023).
  17. 17. A. Byun, M. Kim, and J. Ahn, PRX Quantum 3, 030305 (2022).
  18. 18. M. Kim, K. Kim, J. Hwang et al., Nature Phys. 18, 755 (2022).
  19. 19. F. Arute, K. Arya, R. Babbush et al., Nature 574, 505 (2019).
  20. 20. M. Mu¨ller, I. Lesanovsky, H. Weimer et al., Phys. Rev. Lett. 102, 170502 (2009).
  21. 21. K. McDonnell, L. F. Keary, and J. D. Pritchard, Phys. Rev. Lett. 129, 200501 (2022).
  22. 22. A. M. Farouk, I. I. Beterov, P. Xu et al., ArXiv: 2206. 12176 (2022).
  23. 23. C. W. Mansell and S. Bergamini, New J. Phys. 16, 053045 (2014).
  24. 24. N. Sˇibalic,' J. D. Pritchard, C. S. Adams, and K. J. Weatherill, Comp. Phys.Comm. 220, 319 (2017).
  25. 25. M. Hillery, V. Buˇzek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).
  26. 26. M. A. Nielsen and I. L. Chuang, Quantum Computing and Quantum Information, Cambridge University Press, Cambridge (2000).
  27. 27. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
  28. 28. R. Islam, R. Ma, P. M. Preiss et al., Nature 528, 77 (2015).
  29. 29. M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys. Rev. Lett. 100, 070502 (2008).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library