- PII
- 10.31857/S0044451023080060-1
- DOI
- 10.31857/S0044451023080060
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 164 / Issue number 2
- Pages
- 204-213
- Abstract
- We propose a design of a source of cold thulium atoms based on a 2D magneto-optical trap and perform numerical simulation of its operation. Optimal parameters of cooling radiation and the magnetic field are determined; it is shown that for a total radiation power of 50 mW and an atomic oven temperature of 800 K, the proposed configuration can provide a flux of 4 × 108 cold atoms per second, and with an increase of the oven temperature, the flux can reach ~ 1011 atom/s. Such a source can be used for building frequency standards as well as in experiments with quantum simulators and the Bose–Einstein condensate.
- Keywords
- Date of publication
- 15.08.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 34
References
- 1. K. Bongs et al., Nature Rev. Phys. 1, 731 (2019).
- 2. C. Janvier et al., Phys. Rev. A 105, 022801 (2022).
- 3. V. M'enoret et al., Sci. Rep. 8, 1 (2018).
- 4. I. Bloch, J. Dalibard, and S. Nascimbene, Nature Phys. 8, 267 (2012).
- 5. F. Sch¨afer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Nature Rev. Phys. 2, 411 (2020).
- 6. X. Wu et al., Chinese Phys. B 30, 020305 (2021).
- 7. T. Graham et al., Nature 604, 457 (2022).
- 8. S. M. Brewer et al., Phys. Rev. Lett. 123, 033201 (2019).
- 9. S. D¨orscher et al., Metrologia 58, 015005 (2021).
- 10. T. Bothwell et al., Metrologia 56, 065004 (2019).
- 11. M. Takamoto, Y. Tanaka, and H. Katori, Appl. Phys. Lett. 120, 140502 (2022).
- 12. J. Grotti et al., Nature Phys. 14, 437 (2018).
- 13. S. Wang et al., Opt. Express 28, 11852 (2020).
- 14. J. Cao et al., Appl. Phys. Lett. 120, 054003 (2022).
- 15. A. Golovizin, D. Tregubov, D. Mishin, D. Provorchenko, and N. Kolachevsky, Opt. Express 29, 36734 (2021).
- 16. S. Pollock, J. Cotter, A. Laliotis, and E. Hinds, Opt. Express 17, 14109 (2009).
- 17. D. S. Barker et al., Phys. Rev. Appl. 11, 064023 (2019).
- 18. G. J. Dick, Proceedings of the 19th Annual Precise Time and Time Interval Systems and Applications Meeting, 133 (1989).
- 19. D. Pan, B. Arora, Y.-m. Yu, B. Sahoo, and J. Chen, Phys. Rev. A 102, 041101 (2020).
- 20. M. A. Norcia et al., Phys. Rev. X 8, 021036 (2018).
- 21. G. Biedermann et al., Phys. Rev. Lett. 111, 170802 (2013).
- 22. H. Katori, Appl. Phys. Express 14, 072006 (2021).
- 23. D. Mishin, D. Provorchenko, D. Tregubov, N. Kolachevsky, and A. Golovizin, Appl. Phys. Express 14, 112006 (2021).
- 24. A. Golovizin et al., Nature Commun. 10, 1724 (2019).
- 25. D. A. Mishin et al., Quant. Electr. 52, 505 (2022).
- 26. A. A. Golovizin et al., Nature Commun. 12, 5171 (2021).
- 27. E. Fedorova et al., Phys. Rev. A 102, 063114 (2020).
- 28. M. Barbiero et al., Phys. Rev. Appl. 13, 014013 (2020).
- 29. M. Kwon et al., Rev. Sci. Instrum. 94, 013202 (2023).
- 30. A. A. Golovizin et al., Instrum. Exp. Techn. 65, 896 (2022).
- 31. Д. Д. Сукачев, дисс канд. физ.-матем. наук, Физический институт им. П. Н. Лебедева РАН, Москва (2013).