RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Easy-Plane Antiferromagnet in Tilted Field: Gap in Magnon Spectrum and Susceptibility

PII
10.31857/S0044451023070088-1
DOI
10.31857/S0044451023070088
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 1
Pages
90-99
Abstract
Motivated by recent experimental data on dichloro-tetrakis thiourea-nickel (DTN) [Soldatov et al., Phys. Rev. B 101, 104410 (2020)], a model of antiferromagnet on a tetragonal lattice with single-ion easy-plane anisotropy in the tilted external magnetic field is considered. Using the smallness of the in-plane field component, we analytically address field dependence of the energy gap in “acoustic” magnon mode and transverse uniform magnetic susceptibility in the ordered phase. It is shown that the former is non-monotonic due to quantum fluctuations, which was indeed observed experimentally. The latter is essentially dependent on the “optical” magnon rate of decay on two magnons. At magnetic fields close to the one which corresponds to the center of the ordered phase, it leads to experimentally observed dynamical diamagnetism phenomenon.
Keywords
Date of publication
15.07.2023
Year of publication
2023
Number of purchasers
0
Views
30

References

  1. 1. S. Sachdev, Quantum Phase Transitions, 2nd ed., Cambridge University Press (2011).
  2. 2. F. Mila, European J. Phys. 21, 499 (2000).
  3. 3. T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nature Phys. 4, 198 (2008).
  4. 4. A. Zheludev and T. Roscilde, Comptes Rendus Phys. 14, 740 (2013).
  5. 5. A. Oosawa and H. Tanaka, Phys.Rev.B 65, 184437 (2002).
  6. 6. R. Yu, L. Yin, N. S. Sullivan et al., Nature 489, 379 (2012).
  7. 7. D. Huvonen, S. Zhao, M. Mansson, T. Yankova et al., Phys.Rev.B 85, 100410 (2012).
  8. 8. M. P. Fisher, P.B. Weichman, G. Grinstein et al., Phys.Rev.B 40, 546 (1989).
  9. 9. L. Pollet, N.V. Prokof'ev, B.V. Svistunov et al., Phys.Rev.Lett. 103, 140402 (2009).
  10. 10. A. Paduan-Filho, X. Gratens, and N.F. Oliveira, Phys.Rev.B 69, 020405 (2004).
  11. 11. S.A. Zvyagin, J. Wosnitza, C.D. Batista et al., Phys. Rev.B 85, 047205 (2007).
  12. 12. A.V. Sizanov and A.V. Syromyatnikov, J. Phys.: Cond.Matt. 23, 146002 (2011).
  13. 13. A.V. Sizanov and A.V. Syromyatnikov, Phys.Rev.B 84, 054445 (2011).
  14. 14. K.Y. Povarov, A. Mannig, G. Perren et al., Phys. Rev.B 96, 40414 (2017).
  15. 15. A. Orlova, H. Mayaffre, S. Kramer et al., Phys.Rev. Lett. 121, 177202 (2018).
  16. 16. V. S. Zapf, D. Zocco, B.R. Hansen et al., Phys.Rev. Lett. 96, 077204 (2006).
  17. 17. E. Batyev and L. Braginsky, Sov.Phys. JETP 69, 781 (1984).
  18. 18. E. Batyev, Sov.Phys. JETP 62, 173 (1985).
  19. 19. L. Yin, J. S. Xia, V. S. Zapfet al., Phys.Rev.Lett. 101, 187205 (2008).
  20. 20. S.A. Zvyagin, J. Wosnitza, A.K. Kolezhuk, et al., Phys.Rev.B 77, 092413 (2008).
  21. 21. T.A. Soldatov, A. I. Smirnov, K.Y. Povarov et al., Phys.Rev.B 101, 104410 (2020).
  22. 22. A. S. Sherbakov and O. I. Utesov, J.Magn.Magn. Mater 518, 167390 (2021).
  23. 23. A. Lopez-Castro and M.R. Truter, J.Chem. Soc. 245, 1309 (1963).
  24. 24. T. Holstein and H. Primakoff, Phys.Rev. 58, 1098 (1940).
  25. 25. C. J. Hamer, O. Rojas, and J. Oitmaa, Phys.Rev. 81, 214424 (2010).
  26. 26. A.V. Sizanov and A.V. Syromyatnikov, Phys.Rev.B 84, 054445 (2011).
  27. 27. V.N. Glazkov, JETP Lett. 112, 647 (2020).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library