RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Modeling of Double-Well Potentials for the Schrödinger Equation

PII
10.31857/S0044451023070027-1
DOI
10.31857/S0044451023070027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 164 / Issue number 1
Pages
23-28
Abstract
A new method is proposed for determining level splitting Δ in a double-well 1D potential. Two “partner” functions (one symmetric Ψ+ and the other antisymmetric Ψ) are determined. From these functions, potentials V+(x) and V(x) and energies and corresponding to them are determined from the Schrödinger equation. A unique property of Ψ+ and Ψ is identity = , which makes it possible to determine Δ from the perturbation theory in parameter V+(x) – V(x). For a double-well oscillator potential, the expression for the level splitting, which connects the instanton and single-well limits, is obtained. These results can be employed in the field theory, for which the possibility of obtaining instanton solutions from perturbation theory has been discussed more than once. A number of potentials are considered, for which the value of Δ can be determined without using the semiclassical approximation. Singular potentials of the funnel type are analyzed. The value of Δ determined in this study is compared with the results of numerical solution of the Schrödinger equation for the instanton potential.
Keywords
Date of publication
15.07.2023
Year of publication
2023
Number of purchasers
0
Views
34

References

  1. 1. H. A. Kramers, Physica 7, 284 (1940).
  2. 2. S. Chandrasekar, Rev. Mod. Phys. 15, 1 (1943).
  3. 3. W. Miller, J. Chem. Phys. 61, 1823 (1974).
  4. 4. А. И. Вайнштейн, В. И. Захаров, В. А. Новиков, М. А. Шифман, УФН 136, 553 (1982).
  5. 5. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, Физматлит, Москва (2001).
  6. 6. R. Dutt, A. Khare, and U. Sukhatme, Phys. Lett. B 181, 295 (1986).
  7. 7. J. W. Harald Mu¨ller-Kirsten, Introduction to Quantum Mechanics: Schr¨odinger Equation and Path Integral, 2nd ed., World Sci., Singapore (2012).
  8. 8. R. Merzbacher, Quantum Mechanics, Wisley, New York (1970).
  9. 9. M. Bernstein and L. S. Brown, Phys. Rev. Lett. 52, 1933 (1984).
  10. 10. P. Kumar, M.Ruiz-Altaba, and B. S. Thomas, Phys. Rev. Lett. 57, 2749 (1986).
  11. 11. Wai-Yee Keung, E. Kovacs, and U. P. Sukhatme, Phys. Rev. Lett. 60, 41 (1988).
  12. 12. A. V. Turbiner, Lett. Math. Phys. 74, 169 (2005); doi:10.1007/s11005-005-0012-z
  13. 13. A. V. Turbiner, Int. J. Mod. Phys. A 25, 647 (2010); doi:10.1142/S0217751X10048937
  14. 14. А. V. Turbiner and J. C. del Valle, Acta Polytech. 62, 208 (2022); doi:10.14311/AP.2022.62.0208
  15. 15. Ю. И. Богданов, Н. А. Богданова, Д. В. Фастовец, В. Ф. Лукичев, Письма в ЖЭТФ 114, 391 (2021).
  16. 16. A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
  17. 17. J. Zinn-Justin, Nucl. Phys. B 192, 125 (1981)
  18. 18. 218, 333 (1983).
  19. 19. J. Zinn-Justin and U. D. Jentschura, Ann. Phys. 313, 197 (2004)
  20. 20. 313, 269 (2004)
  21. 21. Phys. Lett. B 596, 138 (2004).
  22. 22. G. V. Dunne and M. Unsal, Phys. Rev. D 89, 105009 (2014).
  23. 23. M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 92, 025046 (2015)
  24. 24. Erratum Phys. Rev. D 92, 089902 (2015).
  25. 25. E. Shuryak and A. V. Turbiner, Phys. Rev. D 98, 105007 (2018).
  26. 26. А. М. Дюгаев, П. Д. Григорьев, Письма в ЖЭТФ 112, 107 (2020).
  27. 27. А. В. Турбинер, Письма в ЖЭТФ 30, 379 (1979).
  28. 28. И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Наука, Москва (1971).
  29. 29. И. В. Андреев, Хромодинамика и жесткие процессы при высоких энергиях, Наука, Москва (1981).
  30. 30. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Часть 1, Физматлит, Москва (2005).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library