- PII
- 10.31857/S0044451023070027-1
- DOI
- 10.31857/S0044451023070027
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 164 / Issue number 1
- Pages
- 23-28
- Abstract
- A new method is proposed for determining level splitting Δ in a double-well 1D potential. Two “partner” functions (one symmetric Ψ+ and the other antisymmetric Ψ–) are determined. From these functions, potentials V+(x) and V–(x) and energies and corresponding to them are determined from the Schrödinger equation. A unique property of Ψ+ and Ψ– is identity = , which makes it possible to determine Δ from the perturbation theory in parameter V+(x) – V–(x). For a double-well oscillator potential, the expression for the level splitting, which connects the instanton and single-well limits, is obtained. These results can be employed in the field theory, for which the possibility of obtaining instanton solutions from perturbation theory has been discussed more than once. A number of potentials are considered, for which the value of Δ can be determined without using the semiclassical approximation. Singular potentials of the funnel type are analyzed. The value of Δ determined in this study is compared with the results of numerical solution of the Schrödinger equation for the instanton potential.
- Keywords
- Date of publication
- 15.07.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 34
References
- 1. H. A. Kramers, Physica 7, 284 (1940).
- 2. S. Chandrasekar, Rev. Mod. Phys. 15, 1 (1943).
- 3. W. Miller, J. Chem. Phys. 61, 1823 (1974).
- 4. А. И. Вайнштейн, В. И. Захаров, В. А. Новиков, М. А. Шифман, УФН 136, 553 (1982).
- 5. Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, Физматлит, Москва (2001).
- 6. R. Dutt, A. Khare, and U. Sukhatme, Phys. Lett. B 181, 295 (1986).
- 7. J. W. Harald Mu¨ller-Kirsten, Introduction to Quantum Mechanics: Schr¨odinger Equation and Path Integral, 2nd ed., World Sci., Singapore (2012).
- 8. R. Merzbacher, Quantum Mechanics, Wisley, New York (1970).
- 9. M. Bernstein and L. S. Brown, Phys. Rev. Lett. 52, 1933 (1984).
- 10. P. Kumar, M.Ruiz-Altaba, and B. S. Thomas, Phys. Rev. Lett. 57, 2749 (1986).
- 11. Wai-Yee Keung, E. Kovacs, and U. P. Sukhatme, Phys. Rev. Lett. 60, 41 (1988).
- 12. A. V. Turbiner, Lett. Math. Phys. 74, 169 (2005); doi:10.1007/s11005-005-0012-z
- 13. A. V. Turbiner, Int. J. Mod. Phys. A 25, 647 (2010); doi:10.1142/S0217751X10048937
- 14. А. V. Turbiner and J. C. del Valle, Acta Polytech. 62, 208 (2022); doi:10.14311/AP.2022.62.0208
- 15. Ю. И. Богданов, Н. А. Богданова, Д. В. Фастовец, В. Ф. Лукичев, Письма в ЖЭТФ 114, 391 (2021).
- 16. A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
- 17. J. Zinn-Justin, Nucl. Phys. B 192, 125 (1981)
- 18. 218, 333 (1983).
- 19. J. Zinn-Justin and U. D. Jentschura, Ann. Phys. 313, 197 (2004)
- 20. 313, 269 (2004)
- 21. Phys. Lett. B 596, 138 (2004).
- 22. G. V. Dunne and M. Unsal, Phys. Rev. D 89, 105009 (2014).
- 23. M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 92, 025046 (2015)
- 24. Erratum Phys. Rev. D 92, 089902 (2015).
- 25. E. Shuryak and A. V. Turbiner, Phys. Rev. D 98, 105007 (2018).
- 26. А. М. Дюгаев, П. Д. Григорьев, Письма в ЖЭТФ 112, 107 (2020).
- 27. А. В. Турбинер, Письма в ЖЭТФ 30, 379 (1979).
- 28. И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, Наука, Москва (1971).
- 29. И. В. Андреев, Хромодинамика и жесткие процессы при высоких энергиях, Наука, Москва (1981).
- 30. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Часть 1, Физматлит, Москва (2005).