RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

On the Theory of Nucleation of Ionic Salts from Aqueous Solution

PII
10.31857/S0044451023060093-1
DOI
10.31857/S0044451023060093
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 6
Pages
830-841
Abstract
The theory of nucleation of ionic salts from aqueous solution is critically analyzed and further developed in two limiting cases of sparingly and highly soluble strong electrolytes. In the case of sparingly soluble colloids with a relatively large screening length (compared to the radius of the critical nucleus), the classical nucleation theory is modified by taking into account the influence of the critical nucleus charge on the nucleation rate, which was disregarded in earlier models. In the opposite limit of highly soluble colloids which are characterized by a relatively small screening length, the influence of the critical nucleus charge on the nucleation rate can be neglected with good accuracy. However, the discrepancy with earlier models, mainly related to the value of the pre-exponential factor, can reach several orders of magnitude.
Keywords
Date of publication
15.06.2023
Year of publication
2023
Number of purchasers
0
Views
29

References

  1. 1. R. H. Doremus, J.of Physical Chemistry 62, 1068 (1958).
  2. 2. P.-P. Chiang, M. D. Donohue, J. of Colloid and Interface Science 122, 230 (1988).
  3. 3. P.-P. Chiang, M. D. Donohue, J. L. Katz, J. of Colloid and Interface Science 122, 251 (1988).
  4. 4. R. J. Hunter, Introduction to modern colloid science Oxford University Press (1993).
  5. 5. J. Lyklema, Fundamentals of Interface and Colloid Science, Vol. II: Solid-Liquid Interfaces, Academic Press (1995).
  6. 6. M. Volmer and A. Weber, Z. Phys. Chem. 119, 253 (1926).
  7. 7. R. Becker and W. Doering, Ann. Phys. 24, 719 (1935).
  8. 8. Я. Б. Зельдович, ЖЭТФ 12, 525 (1942).
  9. 9. T.P. Melia, J.of Applied Chemistry 15, 345 (1965).
  10. 10. A. Mersmann, M. Kind, Chemical Engineering and Technology 11, 264 (1988).
  11. 11. A. W. Adamson, Textbook of Physical Chemistry Academic Press (1973).
  12. 12. G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey Jr., and S. K. Singer, J. of Physical and Chemical Reference Data 6, 409 (1977).
  13. 13. P. Arendt and Kallmann, H., Z. fur Physik, 35, 421 (1926).
  14. 14. J. Tb. G. Overbeek, in: Colloid Science, Vol. I, ed. by H. R. Kruyt, p.162, Elsevier, Amsterdam (1952).
  15. 15. M. Kind and A. Mersmann, Chemie Ingenieur Technik 55, 720 (1983).
  16. 16. A. A. Chernov, Soviet Physics Uspekhi 4, 116 (1961).
  17. 17. S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behaviour, New York (1977).
  18. 18. M. S. Veshchunov, J. of Nuclear Materials 571, 154021 (2022).
  19. 19. D. Kashchiev and G. M. Van Rosmalen, Crystal Research and Technology: J. of Experimental and Industrial Crystallography 38, 555 (2003).
  20. 20. L.G. Sillen and A.E. Martell, Soil Science 100, 74 (1964).
  21. 21. A. E. Nielsen, Pure and Applied Chemistry 53, 2025 (1981).
  22. 22. J.H. Jonte and D.S. Martin, Journal of the American Chemical Society 74, 2052 (1952).
  23. 23. A. E. Nielsen, Acta Chem. Scand. 15, 441 (1961).
  24. 24. A. E. Nielsen, Kristall Technik 4, 17 (1969).
  25. 25. G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, Chem. Rev. 116, 7078 (2016).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library