RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Terahertz Time-Domain Spectroscopy (THz-TDS) of LED Heterostructures with Three and Five InxGa1 – xN/GaN Quantum Wells

PII
10.31857/S0044451023050061-1
DOI
10.31857/S0044451023050061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 5
Pages
669-681
Abstract
Using terahertz time-domain spectroscopy (THz-TDS), we have detected resonance frequencies of plasmon oscillations excited in heterostructures with multiple InxGa1 – xN/GaN quantum wells by laser pulses with a duration of 130 fs in the temperature range from 90 to 170 K. The fast Fourier transform of temporal forms of terahertz pulses has made it possible to obtain frequency spectra of the power and of the phase shift of terahertz radiation, the interpretation of which has allowed us to estimate the quasi-momentum relaxation time (τ = 10–12 s), mobility (μ = 4 × 103 cm2/(V s)), and effective mass (m* = 0.45m) of majority charge carriers in these heterostructures. Based on the frequency spectra of power and phase shift of terahertz radiation, we have obtained the temperature dependences of the effective mass and relaxation time of the quasi-momentum of a 2D electron gas (2DEG). The 2DEG mobility value obtained by the THz-TDS method is in good agreement with the Hall measurement data.
Keywords
Date of publication
15.05.2023
Year of publication
2023
Number of purchasers
0
Views
34

References

  1. 1. B. Richard and M. Schasfoort, Handbook of Surface Plasmon Resonance, (2017).
  2. 2. A. Ando, T. Kurose, V. Reymond, K. Kitano, H. Kitahara, K. Takano, M. Tani, M. Hangyo, and S. Hamaguchi, J. Appl. Phys. 110, 7 (2011).
  3. 3. S. P. Jamison, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski, J. Appl. Phys. 93, 7 (2003).
  4. 4. C. Strothk¨amper, A. Bartelt, R. Eichberger, C. Kaufmann, and T. Unold, Phys. Rev. B 89, 11 (2014).
  5. 5. A. Mendoza-Galvan and J. Gonzalez-Hernandez, J. Appl. Phys. 87, 760 (2000).
  6. 6. M. Orio and D. Pantazis, F. Neese, Photosynthesis Research 102, 2 (2009).
  7. 7. G. Sun, R. Chen, and Y. J. Ding, IEEE J. Sel. Top. Quantum Electron, 19 (2013).
  8. 8. I. Prudaev, S. Sarkisov, O. Tolbanov, and A. Kosobutsky, Phys. Stat. Sol. B 252, 5 (2015).
  9. 9. W. Rehman, R. L. Milot, G. E. Eperon, C. Wehrenfennig, J. L. Boland, H. J. Snaith, M. B. Johnston, and L. M. Herz, Adv. Mat. 27, 48 (2015).
  10. 10. G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, Nano Lett. 16, 8 (2016).
  11. 11. A. M. Ulatowski, L. M. Herz, and M. B. Johnston, J/ of Infrared, Millimeter, and Terahertz Waves 41, 12 (2020).
  12. 12. D. Pashnev, V. V. Korotyeyev, J. Jorudas, T. Kaplas, V. Janonis, A. Urbanowicz, and I. Kaˇsalynas, Appl. Phys. Lett. 117, 16 (2020).
  13. 13. K. H. Tsai, T.-M. Wu, and S. F. Tsay, J. Chem. Phys. 132, 034502 (2010).
  14. 14. V. V. Korotyeyev, V. A. Kochelap, V. V. Kaliuzhnyi, and A. E. Belyaev, Appl. Phys. Lett. 120, 252103 (2022).
  15. 15. P. J. S. van Capel, D. Turchinovich, H. P. Porte, S. Lahmann, U. Rossow, A. Hangleiter, and J. I. Dijkhuis, Phys. Rev. B 84, (2011).
  16. 16. G. Sun, G. Xu, and Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 17, 48 (2011).
  17. 17. H. P. Porte, D. Turchinovich, D. G. Cooke, and P. U. Jepsen, J. Phys.: Conf. Series 193, 012084 (2009).
  18. 18. М. Л. Бадгутдинов, А. Э. Юнович, ФТП 42, 4 (2008).
  19. 19. В. И. Олешко, С. Г. Горина, Ученые записки физического факультета 5, 155501 (2015).
  20. 20. В. Г. Мокеров, А. Л. Кузнецов, Ю. В. Федоров, Е. Н. Енюшкина, А. С. Бугаев, А. Ю. Павлов, Д. Л. Гнатюк, А. В. Зуев, Р. Р. Галиев, Е. Н. Овчаренко, Ю. Н. Свешников, А. Ф. Цацульников, В. М. Устинов, ФТП 43, 4 (2009).
  21. 21. J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, Optics Express 22, 17 (2009).
  22. 22. G. Franssen, P. Perlin, and T. Suski, Phys. Rev. B 69, 4 (2004).
  23. 23. Z. Chang, Phys. Rev. A 70, 4 (2004).
  24. 24. P. Schley, R. Goldhahn, G. Gobsch, M. Feneberg, K. Thonke, and X. Wang, A. Yoshikawa, Phys. Stat. Sol. B 246, 6 (2009).
  25. 25. S. J. Allen, D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).
  26. 26. G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 2 (1955).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library