RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Scalaron Decay in Perturbative Quantum Gravity

PII
10.31857/S0044451023050024-1
DOI
10.31857/S0044451023050024
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 5
Pages
628-640
Abstract
A certain quadratic gravity model provides a successfully inflationary scenario. The inflation is driven by the new scalar degree of freedom called scalaron. After the end of inflation the scalaron decays in matter and dark matter degrees of freedom reheating the Universe. We study new channels by which the scalaron can transfer energy to the matter sector. These channels are annihilation and decay via intermediate graviton states. Results are obtained within perturbative quantum gravity. In the heavy scalaron limit only scalar particles are produced by the annihilation channel. Scalaron decays in all types of particles are allowed. In the light scalaron limit decay channel is strongly suppressed. Boson production via the annihilation channel is expected to be dominant at the early stages of reheating, while fermion production will dominate later stages.
Keywords
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
42

References

  1. 1. A. Accioly, S. Ragusa, H. Mukaim, and E. C. de Rey Neto, Int. J. Theor. Phys. 39, 1599 (2000); doi:10.1023/A:1003632311419
  2. 2. A. Hindawi, B. A. Ovrut, and D. Waldram, Phys. Rev. D 53, 5583 (1996); doi:10.1103/PhysRevD.53.5583 [arXiv:hep-th/9509142 [hep-th]].
  3. 3. R. H. Dicke, Phys. Rev. 125, 2163 (1962); doi:10.1103/PhysRev.125.2163.
  4. 4. K. i. Maeda, Phys. Rev. D 39, 3159 (1989); doi:10.1103/PhysRevD.39.3159.
  5. 5. V. Faraoni, E. Gunzig, and P. Nardone, Fund. Cosmic Phys. 20, 121 (1999) [arXiv:gr-qc/9811047 [gr-qc]].
  6. 6. A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010) doi:10.12942/lrr-2010-3 [arXiv:1002.4928 [gr-qc]].
  7. 7. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980); doi:10.1016/0370-2693(80)90670-X.
  8. 8. Y. Akrami et al. [Planck], Astron. Astrophys. 641, A10 (2020); doi:10.1051/0004-6361/201833887 [arXiv:1807.06211 [astro-ph.CO]].
  9. 9. P. A. R. Ade et al. [BICEP and Keck], Phys. Rev. Lett. 127, no.15, 151301 (2021); doi:10.1103/PhysRevLett.127.151301 [arXiv:2110.00483 [astro-ph.CO]].
  10. 10. D. Paoletti, F. Finelli, J. Valiviita, and M. Hazumi, [arXiv:2208.10482 [astro-ph.CO]].
  11. 11. G. Galloni, N. Bartolo, S. Matarrese, M. Migliaccio, A. Ricciardone, and N. Vittorio, [arXiv:2208.00188 [astro-ph.CO]].
  12. 12. A. Vilenkin, Phys. Rev. D 32, 2511 (1985); doi:10.1103/PhysRevD.32.2511.
  13. 13. A. S. Koshelev, L. Modesto, L. Rachwal, and A. A. Starobinsky, JHEP 11, 067 (2016); doi:10.1007/JHEP11(2016)067 [arXiv:1604.03127 [hep-th]].
  14. 14. E. V. Arbuzova, A. D. Dolgov, and L. Reverberi, JCAP 02, 049 (2012); doi:10.1088/1475-7516/2012/02/049 [arXiv:1112.4995 [gr-qc]].
  15. 15. E. V. Arbuzova, A. D. Dolgov, and R. S. Singh, JCAP 07, 019 (2018); doi:10.1088/1475-7516/2018/07/019 [arXiv:1803.01722 [gr-qc]].
  16. 16. E. Arbuzova, A. Dolgov, and R. Singh, Symmetry 13, 877 (2021); doi:10.3390/sym13050877.
  17. 17. B. N. Latosh, Phys. Part. Nucl. 51, 859 (2020); doi:10.1134/S1063779620050056 [arXiv:2003.02462 [hep-th]].
  18. 18. C. P. Burgess, Living Rev. Rel. 7, 5 (2004); doi:10.12942/lrr-2004-5 [arXiv:gr-qc/0311082 [gr-qc]].
  19. 19. M. Levi, Rept. Prog. Phys. 83, 075901 (2020); doi:10.1088/1361-6633/ab12bc [arXiv:1807.01699 [hep-th]].
  20. 20. X. Calmet, Int. J. Mod. Phys. D 22, 1342014 (2013); doi:10.1142/S0218271813420145 [arXiv:1308.6155 [gr-qc]].
  21. 21. P. Vanhove, [arXiv:2104.10148 [gr-qc]].
  22. 22. G. 't Hooft and M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974).
  23. 23. M. H. Goro and A. Sagnotti, Phys. Lett. B 160, 81 (1985); doi:10.1016/0370-2693(85)91470-4.
  24. 24. D. Prinz, Class. Quant. Grav. 38, 215003 (2021); doi:10.1088/1361-6382/ac1cc9 [arXiv:2004.09543 [hep-th]].
  25. 25. B. S. DeWitt, Phys. Rev. 162, 1239 (1967); doi:10.1103/PhysRev.162.1239.
  26. 26. S. Sannan, Phys. Rev. D 34, 1749 (1986); doi:10.1103/PhysRevD.34.1749.
  27. 27. B. Latosh, Class. Quant. Grav. 39, 165006 (2022); doi:10.1088/1361-6382/ac7e15 [arXiv:2201.06812 [hep-th]].
  28. 28. R. Mertig, M. Bohm, and A. Denner, Comput. Phys.Commun. 64, 345 (1991); doi:10.1016/0010-4655(91)90130-D.
  29. 29. V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys.Commun. 256, 107478 (2020); doi:10.1016/j.cpc.2020.107478 [arXiv:2001.04407 [hep-ph]].
  30. 30. H. H. Patel, Comput. Phys.Commun. 197, 276 (2015); doi:10.1016/j.cpc.2015.08.017 [arXiv:1503.01469 [hep-ph]].
  31. 31. H. H. Patel, Comput. Phys.Commun. 218, 66 (2017); doi:10.1016/j.cpc.2017.04.015 [arXiv:1612.00009 [hep-ph]].
  32. 32. V. Shtabovenko, Comput. Phys.Commun. 218, 48 (2017) doi:10.1016/j.cpc.2017.04.014; [arXiv:1611.06793 [physics.comp-ph]].
  33. 33. S. Mandelstam, Phys. Rev. 115, 1741 (1959); doi:10.1103/PhysRev.115.1741.
  34. 34. S. Mandelstam, Phys. Rev. 112, 1344 (1958); doi:10.1103/PhysRev.112.1344.
  35. 35. S. M. Bilenky, Introduction to Feynman Diagrams and Electroweak Interactions Physics, Moscow, Nauka (1995).
  36. 36. S. Weinberg, The Quantum theory of elds. Vol. 1: Foundations, Cambridge University Press (2005).
  37. 37. M. E. Peskin and D. V. Schroeder, An Introduction to quantum eld theory, Addison-Wesley (1995).
  38. 38. Y. b. Zeldovich, Adv. Astron. Astrophys. 3, 241 (1965); doi:10.1016/b978-1-4831-9921-4.50011-9.
  39. 39. B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977); doi:10.1103/PhysRevLett.39.165.
  40. 40. G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160, 151 (1979); doi:10.1016/0550-3213(79)90234-7.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library