RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Resonance Method for Measuring Parameters of the Spin Transport in a Spin-Valve Structure

PII
10.31857/S0044451023040168-1
DOI
10.31857/S0044451023040168
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 4
Pages
597-601
Abstract
The known methods for measuring the spin transport parameters in spin-valve structures are based on the Hanle effect, viz., electron spin precession in an external magnetic field and a decrease in the magnetoresistive signal. These methods make it possible to determine the spin relaxation time in the paramagnetic layer and the relative current polarization constant. We describe an alternative method of measuring in zero external magnetic field, which is based on the resonant increase in the magnetic susceptibility of the paramagnetic layer due to the paramagnetic resonance induced by the nonequilibrium magnetization due to the spin accumulation effect. The proposed method makes it possible to determine the absolute value of spin accumulation in a paramagnet, which can be used as a parameter for numerical solution of three-dimensional diffusion equations of spin transport.
Keywords
Date of publication
15.04.2023
Year of publication
2023
Number of purchasers
0
Views
35

References

  1. 1. S. S. P. Parkin, K. P. Roche, M. G. Samant et al., J. Appl. Phys. 85, 5828 (1999).
  2. 2. S. Tehrani, J. M. Slaughter, M. Deherrera et al., Proc. IEEE 91, 703 (2003).
  3. 3. B. Dieny, V. S. Speriosu, S. S. P. Parkin et al., Phys. Rev. B 43, 1297 (1991).
  4. 4. M. Baibich, J. M. Broto, A. Fert et al., Phys. Rev. Lett. 61, 2472 (1988).
  5. 5. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
  6. 6. N. Strelkov, A. Vedyayev, N. Ryzhanova et al., Phys. Rev. B 84, 024416 (2011).
  7. 7. M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).
  8. 8. F. J. Jedema, H. B. Heersche, A. T. Filip et al., Nature 416, 713 (2002).
  9. 9. S. Noh, D. Monma, K. Miyake et al., IEEE Trans. Magn. 47, 2387 (2011).
  10. 10. B. L. Altshuler, A. G. Aronov, D. E. Khmelnitskii, and A. I. Larkin, in Quantum Theory of Solids, ed. by I. M. Lifshits, Mir Publ., Moscow (1982), p. 130.
  11. 11. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, ed. by A. L. Efros and M. B. Pollak, Elsevier, Amsterdam (1985), pp. 1-153.
  12. 12. P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987).
  13. 13. А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Физматлит, Москва (1962)
  14. 14. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, ed. by R. Silverman, Dover publ., New York (1963).
  15. 15. D. Pines and P. Nozi'eres, The Theory of Quantum Liquids, Vol. 1, CRC Press, Boca Raton (2018).
  16. 16. S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. Lett. 88, 236601 (2002).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library