RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Nonlinear Parametric Resonance in the Simplest Model of a Solar Dynamo

PII
10.31857/S0044451023040089-1
DOI
10.31857/S0044451023040089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 4
Pages
514-523
Abstract
The properties of nonlinear parametric resonance are investigated using the example of the low-mode Parker dynamo model. This model is a system of four ordinary differential equations and in the simplest approximation describes the processes of generation and oscillation of large-scale magnetic fields in stellar systems. In the absence of nonlinear effects, the problem under consideration, by analogy with a system of harmonic oscillations, admits an asymptotic division of multiple resonant frequencies. However, despite the fact that at first glance at these frequencies it is reasonable to expect an amplification of the amplitude in the nonlinear case, it is demonstrated that in the presence of nonlinear terms, the behavior of the system is significantly more complex. In particular, generation suppression can be observed at resonant or low frequencies, while amplification occurs in the immediate vicinity of the resonance or at sufficiently high frequencies. The reasons are discussed for this behavior, as well as the possibility of the influence of parametric resonance on the establishment of planetary dynamo cycles.
Keywords
Date of publication
15.04.2023
Year of publication
2023
Number of purchasers
0
Views
29

References

  1. 1. V.N. Obridko, M.M. Katsova, and D.D. Sokolo, Monthly Notices of the Royal Astronomical Society 516.1, 1251 (2022).
  2. 2. F. Stefani, J. Beer, A. Giesecke, T. Gloaguen, M. Seilmayer, R. Stepanov, and T. Weier, Astronomische Nachrichten 341, 600 (2020).
  3. 3. D. Moss and D. Sokoloff, Astr. and Astrophys. 553, A37 (2013).
  4. 4. D. Moss and D. Sokoloff, Astr. Reps. 61(10), 878 (2017).
  5. 5. D. Moss, N. Piskunov, and D. Sokolo, Astr. and Astrophys. 396(3), 885 (2002).
  6. 6. E.N. Parker, The Astrophys. J. 122, 293 (1955).
  7. 7. N.W. McLachlan, Theory and Application of Mathieu Functions, Clarendon Press, Oxford (1947).
  8. 8. Ф. Краузе, К.-Х. Рэдлер, Магнитная гидродинамика средних полей и теория динамо, Пер. с англ., Мир, Москва (1984).
  9. 9. Л. Ландау, Е. Лифшиц, Теоретическая физика, Физматлит, Москва (2001).
  10. 10. H. Schwabe, S onnenbeobachtungen im Jahre 1843, Von Herrn Hofrath Schwabe in Dessau. 21, 233 (1844).
  11. 11. M.N. Gnevyshev, Solar Phys. 51(1), 175 (1977).
  12. 12. S.M. Tarbeeva, V.B. Semikoz, and D.D. Sokolo, Astr. Reps. 55(5), 456 (2011).
  13. 13. G.Ruediger and A. Brandenburg, Astr. and Astrophys. 296, 557 (1995).
  14. 14. J.C. Butcher, Numerical Methods for Ordinary Di erential Equations, John Wiley and Sons (2016).
  15. 15. S.M. Stigler, The History of Statistics: The Measurement of Uncertainty Before 1900, Harvard University Press, Harvard (1986).
  16. 16. Л.Л. Кичатинов, А.А. Непомнящих, Письма в Астрон. Ж. 41(7), 409 (2015).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library