RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Entropy of Coherent States of Optical Fields

PII
10.31857/S004445102304003X-1
DOI
10.31857/S004445102304003X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 4
Pages
467-479
Abstract
We consider statistical mixtures of two and three arbitrary coherent states that are the states of a data carrier in an optical communication channel. The eigenvalues and eigenvectors of the corresponding density operators are obtained in analytic form. For this purpose, an original parameterization of triangles on the complex phase plane is introduced. Analytic expressions are obtained for the von Neumann entropy of mixtures of two and three arbitrary coherent states, and its maximal value for a given average number of photons is calculated. It is found that the use of three coherent states for a given average number of photons ensures a larger capacity of an optical communication channel as compared to two states.
Keywords
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
41

References

  1. 1. С. Я. Килин, Квантовая оптика. Поля и их детектирование, Едиториал УРСС, Москва (2003).
  2. 2. В. А. Фок, Начала квантовой механики, Наука, Москва (1976).
  3. 3. С. Я. Килин, УФН 169, 507 (1999).
  4. 4. К. Хелстром, Квантовая теория проверки гипотез и оценивания, Мир, Москва (1979).
  5. 5. Дж. Прокис, Цифровая связь, Радио и связь, Москва (2000).
  6. 6. T. Muciaccia, F. Gargano, and V. M. N. Passaro, Photonics 1, 323 (2014).
  7. 7. I. A. Burenkov, O. V. Tikhonova, S. V. Polyakov, Optica 5, 227 (2018).
  8. 8. I. B. Djordjevic, Advanced Coding for Optical Communications, in Optical Fiber Telecommunications (Sixth Edition), ed. by I. P. Kaminow, T. Li, and A. E. Willner, Academic Press, Boston (2013).
  9. 9. I. Khan, D. Elser, T. Dirmeier et al., Phil. Trans. Roy. Soc. A 375, 20160235 (2017).
  10. 10. Квантовая криптография: идеи и практика, под ред. С. Я. Килина, Д. Б. Хорошко, А. П. Низовцева, Белорусская наука, Минск (2007).
  11. 11. D. Sych and G. Leuchs, New J. Phys. 12, 053019 (2010).
  12. 12. Д. Б. Хорошко, Д. И. Пустоход, С. Я. Килин, Опт. и спектр. 112, 373 (2012).
  13. 13. B. Schumacher, Phys. Rev. A 51, 2738 (1995).
  14. 14. S. Ya. Kilin, Progr. Opt. 42, 3 (2001).
  15. 15. A. Furusawa, J. L. Sørensen, S. L. Braunstein et al., Science 282, 706 (1998).
  16. 16. D. B. Horoshko and S. Ya. Kilin, Phys. Rev. A 61, 032304 (2000).
  17. 17. J. H. Shapiro, G. Saplacoglu, S.-T. Ho et al., J. Opt. Soc. Amer. B 4, 1604 (1987).
  18. 18. A. V. Masalov, A. A. Putilin, and M. V. Vasilyev, J. Mod. Opt. 41, 1941 (1994).
  19. 19. Д. Б. Хорошко, С. Я. Килин, ЖЭТФ 106, 1278 (1994).
  20. 20. I. V. Dudinets and V.I. Man'ko, J.Russ. Laser. Res. 36, 251 (2015).
  21. 21. K. Br'adler and C. Weedbrook, Phys. Rev. A 97, 022310 (2018).
  22. 22. А. С. Холево, Пробл. перед. инф. 9, 177 (1973).
  23. 23. R. J. Glauber, Phys. Rev. 131, 2766 (1963).
  24. 24. C. E. Shannon, Bell System Techn. J. 27, 379 (1948).
  25. 25. V.V. Dodonov, I.A. Malkin and V.I. Man'ko, Physica 72, 597 (1974).
  26. 26. S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons, Oxford Univ. Press (2006).
  27. 27. D. B. Horoshko and S. Ya. Kilin, J. Mod. Opt. 44, 2043 (1997).
  28. 28. D. B. Horoshko, S. Ya. Kilin, Opt. Express 2, 347 (1998).
  29. 29. Д. Б. Хорошко, С. Я. Килин, ЖЭТФ 117, 844 (2000).
  30. 30. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press (2013).
  31. 31. R. Deaux, Introduction to the Geometry of Complex Numbers, Dover Publ. (2008).
  32. 32. D. B. Horoshko, S. De Bi'evre, M. I. Kolobov et al., Phys. Rev. A 93, 062323 (2016).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library