- PII
- 10.31857/S004445102302013X-1
- DOI
- 10.31857/S004445102302013X
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 163 / Issue number 2
- Pages
- 284-292
- Abstract
- The evolution of burning modes of a weak-current corona discharge in a diode filled with atmospheric air, having a pointed cathode and a flat anode, has been investigated. A theoretical description is performed in terms of an axisymmetric multifluid plasma model, including the kinetics of 9 types of particles and 25 plasma-chemical reactions. A discharge in a gap 10 mm long, with a needle-like cathode having a tip curvature radius of 100 μm, a source voltage of 8 kV, a ballast capacitance of 100 pF and a circuit ballast resistance of 1 MΩ, is described in detail. It is shown, both experimentally and theoretically, that the discharge has a lifetime of 180 μs and occurs in four clearly different stages under these conditions: (1) dark breakdown delay phase (0–20 μs); (2) Trichel pulse phase with a variable on–off time ratio and quasi-steady-state corona current component (20–80 μs); and (3) intermediate phase of monotonically rising weak current (80–130 μs), which ends with a vibrational transition to the (4) steady-state phase (130–180 μs), having a typical structure of glow discharge. The tendencies to a change in the corona discharge parameters with a variation in the feed voltage are analyzed. The results of theoretical calculations are in good agreement with the experimental data.
- Keywords
- Date of publication
- 15.02.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 34
References
- 1. L. P. Loeb, Electrical Coronas, University of California, Berkeley CA (1965).
- 2. Ю. П. Райзер, Физика газового разряда, Издательство , Долгопрудный (2009).
- 3. В. Н. Ужов, Очистка промышленных газов электрофильтрами, Издательство , Москва (1967).
- 4. В. В. Базуткин, В. П. Ларионов, Ю. С. Пинталь, Техника высоких напряжений. Изоляция и перенапряжения в электрических системах, Энергоатомиздат, Москва (1986).
- 5. G. W. Trichel, Phys. Rev. 54, 1078 (1938).
- 6. M. Cˇern'ak, T. Hoder, and Z. Bonaventura, Plasma Sour. Sci. Technol. 29, 013001 (2020).
- 7. V. Tarasenko, E. Baksht, V. Kuznetsov, V. Panarin, V. Skakun, E. Sosnin, and D. Beloplotov, J. Atmosph. Sci. Research 3(4), 28 (2020).
- 8. N. G. C. Ferreira, D. F. N. Santos, P. G. C. Almeida, G. V. Naidis, and M. S. Benilov, J. Phys. D: Appl. Phys. 52, 355206 (2019).
- 9. P. Sattari, C. F. Gallo, G. S. P. Castle, and K. Adamiak, J. Phys. D: Appl. Phys. 44, 155502 (2011).
- 10. S. Chen, K. Li, and S. Nijdam, Plasma Sour. Sci. Technol. 28, 055017 (2019).
- 11. Y. Zheng, L. Wang, D. Wang, and S. Jia, Phys. Plasmas 24, 063515 (2017).
- 12. J. Mizeraczyk, A. Berendt, and Y. Akishev, J. Phys. D: Appl. Phys. 51, 155204 (2018).
- 13. A. Sun, X. Zhang, Y. Guo, Y. He, and G. Zhang, Chinese Phys. B 30, 055207 (2021).
- 14. A. O. Kokovin, A. V. Kozyrev, and V. Yu. Kozhevnikov, J. Phys.: Conf. Series 2064, 012024 (2021).
- 15. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sour. Sci. Technol. 14, 722 (2005).
- 16. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveev, and V. P. Silakov, Plasma Sour. Sci. Technol. 1, 207 (1992).
- 17. N. M. Zubarev, V. Y. Kozhevnikov, A. V. Kozyrev et al., Plasma Sour. Sci. Technol. 29, 125008 (2020).
- 18. COMSOL Multiphysics® v. 6.0. www.comsol.com.COMSOL AB, Stockholm, Sweden.
- 19. V. F. Tarasenko, E. Kh. Baksht, N. P. Vinogradov, A. V. Kozyrev, A. O. Kokovin, and V. Yu. Kozhevnikov, JETP Lett. 115, 667 (2022).
- 20. Ю. С. Акишев, И. В. Кочетов, А. И. Лобойко, А. П. Напартович, Физика плазмы 28, 1136 (2002).
- 21. Yu. S. Akishev, M. E. Grushin, V. B. Karal'nik, and N. I. Trushkin, Plasma Phys. Rep. 27, 520 (2001).
- 22. Yu. Akishev, M. Grushin, I. Kochetov, V. Karal'nik, A. Napartovich, and N. Trushkin, Plasma Sour. Sci. Technol. 14, S18 (2005).