RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Evolution of Negative Corona in the Discharge-Current Limitation Mode: Transition from the Pulsed-Periodic Mode to Steady-State Burning

PII
10.31857/S004445102302013X-1
DOI
10.31857/S004445102302013X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 2
Pages
284-292
Abstract
The evolution of burning modes of a weak-current corona discharge in a diode filled with atmospheric air, having a pointed cathode and a flat anode, has been investigated. A theoretical description is performed in terms of an axisymmetric multifluid plasma model, including the kinetics of 9 types of particles and 25 plasma-chemical reactions. A discharge in a gap 10 mm long, with a needle-like cathode having a tip curvature radius of 100 μm, a source voltage of 8 kV, a ballast capacitance of 100 pF and a circuit ballast resistance of 1 MΩ, is described in detail. It is shown, both experimentally and theoretically, that the discharge has a lifetime of 180 μs and occurs in four clearly different stages under these conditions: (1) dark breakdown delay phase (0–20 μs); (2) Trichel pulse phase with a variable on–off time ratio and quasi-steady-state corona current component (20–80 μs); and (3) intermediate phase of monotonically rising weak current (80–130 μs), which ends with a vibrational transition to the (4) steady-state phase (130–180 μs), having a typical structure of glow discharge. The tendencies to a change in the corona discharge parameters with a variation in the feed voltage are analyzed. The results of theoretical calculations are in good agreement with the experimental data.
Keywords
Date of publication
15.02.2023
Year of publication
2023
Number of purchasers
0
Views
34

References

  1. 1. L. P. Loeb, Electrical Coronas, University of California, Berkeley CA (1965).
  2. 2. Ю. П. Райзер, Физика газового разряда, Издательство , Долгопрудный (2009).
  3. 3. В. Н. Ужов, Очистка промышленных газов электрофильтрами, Издательство , Москва (1967).
  4. 4. В. В. Базуткин, В. П. Ларионов, Ю. С. Пинталь, Техника высоких напряжений. Изоляция и перенапряжения в электрических системах, Энергоатомиздат, Москва (1986).
  5. 5. G. W. Trichel, Phys. Rev. 54, 1078 (1938).
  6. 6. M. Cˇern'ak, T. Hoder, and Z. Bonaventura, Plasma Sour. Sci. Technol. 29, 013001 (2020).
  7. 7. V. Tarasenko, E. Baksht, V. Kuznetsov, V. Panarin, V. Skakun, E. Sosnin, and D. Beloplotov, J. Atmosph. Sci. Research 3(4), 28 (2020).
  8. 8. N. G. C. Ferreira, D. F. N. Santos, P. G. C. Almeida, G. V. Naidis, and M. S. Benilov, J. Phys. D: Appl. Phys. 52, 355206 (2019).
  9. 9. P. Sattari, C. F. Gallo, G. S. P. Castle, and K. Adamiak, J. Phys. D: Appl. Phys. 44, 155502 (2011).
  10. 10. S. Chen, K. Li, and S. Nijdam, Plasma Sour. Sci. Technol. 28, 055017 (2019).
  11. 11. Y. Zheng, L. Wang, D. Wang, and S. Jia, Phys. Plasmas 24, 063515 (2017).
  12. 12. J. Mizeraczyk, A. Berendt, and Y. Akishev, J. Phys. D: Appl. Phys. 51, 155204 (2018).
  13. 13. A. Sun, X. Zhang, Y. Guo, Y. He, and G. Zhang, Chinese Phys. B 30, 055207 (2021).
  14. 14. A. O. Kokovin, A. V. Kozyrev, and V. Yu. Kozhevnikov, J. Phys.: Conf. Series 2064, 012024 (2021).
  15. 15. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sour. Sci. Technol. 14, 722 (2005).
  16. 16. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveev, and V. P. Silakov, Plasma Sour. Sci. Technol. 1, 207 (1992).
  17. 17. N. M. Zubarev, V. Y. Kozhevnikov, A. V. Kozyrev et al., Plasma Sour. Sci. Technol. 29, 125008 (2020).
  18. 18. COMSOL Multiphysics® v. 6.0. www.comsol.com.COMSOL AB, Stockholm, Sweden.
  19. 19. V. F. Tarasenko, E. Kh. Baksht, N. P. Vinogradov, A. V. Kozyrev, A. O. Kokovin, and V. Yu. Kozhevnikov, JETP Lett. 115, 667 (2022).
  20. 20. Ю. С. Акишев, И. В. Кочетов, А. И. Лобойко, А. П. Напартович, Физика плазмы 28, 1136 (2002).
  21. 21. Yu. S. Akishev, M. E. Grushin, V. B. Karal'nik, and N. I. Trushkin, Plasma Phys. Rep. 27, 520 (2001).
  22. 22. Yu. Akishev, M. Grushin, I. Kochetov, V. Karal'nik, A. Napartovich, and N. Trushkin, Plasma Sour. Sci. Technol. 14, S18 (2005).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library