RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

On the Problem of Bound States of Electron and Hole in Transition Metal Dichalcogenides

PII
10.31857/S0044451023020098-1
DOI
10.31857/S0044451023020098
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 2
Pages
227-237
Abstract
The interacting electron and hole in transition metal dichalcogenides are considered. To investigate the interaction the Bethe-Salpeter equation was obtained in the leading order in the interaction potential. It is shown that the behavior of the potential at short distances significantly affects the binding energy of the electron and the hole. We demonstrate that the expansion of the Bethe-Salpeter equation in the small coupling constant does not contain singular operators. Therefore, the binding energy of the electron and the hole does not contain the regularization parameter. Using the perturbation theory in the coupling constant we analytically calculated the energies of the ground and first excited states of the exiton. For arbitrary values of the coupling constant, the energies of the bound states of the electron and the hole are obtained numerically. The critical values of the coupling constant for the Coulomb potential and for the exponentially decreasing potential are also found numerically.
Keywords
Date of publication
15.02.2023
Year of publication
2023
Number of purchasers
0
Views
35

References

  1. 1. K. S. Novoselov et al., Science 306, 666 (2004).
  2. 2. Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschl¨ogl, Phys. Rev. B 84, 153402 (2011).
  3. 3. A. S. Rodin and A. H. Castro Neto, Phys. Rev. B 88, 195437 (2013).
  4. 4. J. Zhou, W.-Y. Shan, W. Yao, and D. Xiao, Phys. Rev. Lett. 115, 166803 (2015).
  5. 5. M. Trushin, M. O. Goerbig, and W. Belzig, Phys. Rev. B 94, 041301(R) (2016).
  6. 6. M. Trushin, M. O. Goerbig, and W. Belzig, Phys. Rev. Lett. 120, 187401 (2018).
  7. 7. M. Trushin, Phys. Rev. B 99, 205307 (2019).
  8. 8. B. Scharf, D. V. Tuan, I. Zutic, and H. Dery, J. Phys.: Condens. Matter 31, 203001 (2019).
  9. 9. N. V. Leppenen, L. E. Golub, and E. L. Ivchenko, Phys. Rev. B 102, 155305 (2020).
  10. 10. M. F. C. Martins Quintela, J. C. G. Henriques, N. M. R. Peres, Phys. Stat. Sol. B, 2200097 (2022).
  11. 11. В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский, Квантовая электродинамика, Наука, Москва (1984).
  12. 12. C. Itzykson, and J.-B. Zuber, Quantum eld theory, McGraw-Hill (1980).
  13. 13. G. F. Glinskii and Zl. Koinov, Theor. Math. Phys. 70, 252 (1987).
  14. 14. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
  15. 15. A. Chernikov, T. C. Berkelbach, H. M. Hill et al., Phys. Rev. Lett. 113, 076802 (2014).
  16. 16. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, Phys. Rev. Lett. 113, 026803 (2014).
  17. 17. А. И. Ахиейзер, В. Б. Берестецкий, Квантовая электродинамика, Наука, Москва (1981).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library