RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Formation, Diffusion, and Growth of Gas Bubbles in γ-Uranium with the Excess of Interstitial Atoms: Relation between Molecular Dynamics and Kinetics

PII
10.31857/S0044451023020074-1
DOI
10.31857/S0044451023020074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 2
Pages
201-213
Abstract
The formation of gas nanobubbles through the merging of individual fission products of uranium is an important process for the evolution of nuclear fuels. The theoretical description of this process is very difficult because both the dynamics of individual atoms in the lattice and the kinetics of evolution of an ensemble of bubbles should be taken into account within a unified model. Such a model is constructed in this work on the basis of molecular dynamics simulations for xenon bubbles in bcc uranium in the case of the excess of interstitial atoms in the crystal matrix. The analysis is based on the molecular dynamics simulation of the nonequilibrium process of formation of xenon nanobubbles from individual Xe atoms dissolved in the crystal matrix. A relation between the size of bubbles and the number of gas atoms in them, as well as the dependence of the diffusion coefficient of bubbles on their radius and the number of interstitial atoms in the γ-U matrix, has been analyzed. A kinetic model of evolution of the ensemble of bubbles has been proposed to describe the molecular dynamics results and to extrapolate them to long times.
Keywords
Date of publication
15.02.2023
Year of publication
2023
Number of purchasers
0
Views
35

References

  1. 1. M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-Azab, M. Freyss, F. Iglesias, K. Kulacsy, G. Pastore, S. R. Phillpot et al., J. Nucl. Materials 504, 300 (2018).
  2. 2. J. Rest, M. Cooper, J. Spino, J. Turnbull, P. Van U elen, and C. Walker, J. Nucl. Materials 513, 310 (2019).
  3. 3. H. Trinkaus and B. Singh, J. Nucl. Materials 323, 229 (2003).
  4. 4. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. Van U elen, and L. Luzzi, J. Nucl. Materials 509, 687 (2018).
  5. 5. Z. Qian, W. Liu, R. Yu, Y. Tao, D. Yun, and L. Gu, J. Nucl. Materials 556, 53188 (2021).
  6. 6. D. Olander and D. Wongsawaeng, J. Nucl. Materials 354, 94 (2006).
  7. 7. M. Veshchunov, V. Ozrin, V. Shestak, V. Tarasov, R. Dubourg, and G. Nicaise, Nucl. Eng. and Design 236, 179 (2006).
  8. 8. A. Volkov and A. Ryazanov, J. Nucl. Materials 273, 155 (1999).
  9. 9. R. E. Voskoboinikov and A. E. Volkov, J. Nucl. Materials 282, 66 (2000).
  10. 10. R. E. Voskoboinikov and A. E. Volkov, J. Nucl. Materials 297, 262 (2001).
  11. 11. J. Rest, J. Nucl. Materials 402, 179 (2010).
  12. 12. L. Noirot, J. Nucl. Materials 447, 166 (2014).
  13. 13. M. Veshchunov and V. Shestak, J. Nucl. Materials 376, 174 (2008).
  14. 14. L. Verma, L. Noirot, and P. Maugis, J. Nucl. Materials 528, 151874 (2020).
  15. 15. J. Evans, J. Nucl. Materials 210, 21 (1994).
  16. 16. А. С. Антропов, В. Д. Озрин, В. В. Стегайлов, В. И. Тарасов, ЖЭТФ 156, 125 (2019).
  17. 17. A. Antropov and V. Stegailov, J. Nucl. Materials 533, 152110 (2020).
  18. 18. A. Antropov and V. Stegailov, J. Nucl. Materials 551, 152942 (2021).
  19. 19. E. Gruber, J. Appl. Phys. 38, 243 (1967).
  20. 20. S. Chandrasekhar, Rev. Mod. Phys. 15, 59 (1943).
  21. 21. E. Moore, L. R. Corrales, T. Desai, and R. Devanathan, J. Nucl. Materials 419, 140 (2011).
  22. 22. S. Murphy, A. Chartier, L. Van Brutzel, and J.-P. Crocombette, Phys. Rev. B 85, 144102 (2012).
  23. 23. A. Jelea, R.-M. Pellenq, and F. Ribeiro, J. Nucl. Materials 444, 153 (2014).
  24. 24. X.-Y. Liu and D. Andersson, J. Nucl. Materials 462, 8 2015
  25. 25. L. Yang and B. Wirth, J. Nucl. Materials 544, 152730 (2021).
  26. 26. Z. Xiao, Y. Wang, S. Hu, Y. Li, and S.-Q. Shi, Comp. Mat. Sci. 184, 109867 (2020).
  27. 27. K. Nogita and K. Une, Nucl. Inst. and Met. in Phys. Res. Sec. B: Beam Interact. with Mat. and Atoms 141, 481 1998.
  28. 28. G. Greenwood, A. Foreman, and D. Rimmer, J. Nucl. Materials 1, 305 1959.
  29. 29. H. Xiao, C. Long, X. Tian, and S. Li, Mat. and Design 74, 55 2015.
  30. 30. S. Hu, W. Setyawan, V. V. Joshi, and C. A. Lavender, J. Nucl. Materials 490, 49 2017.
  31. 31. D. Yun, M. A. Kirk, P. M. Baldo, J. Rest, A. M. Yacout, and Z. Z. Insepov, J. Nucl. Materials 437, 240 2013.
  32. 32. D. Yun, J. Rest, W. Zhang, X. Xie, W. Liu, and L. Gu, J. Nucl. Materials 540, 152409 (2020).
  33. 33. W. Zhang, D. Yun, and W. Liu, Materials 12, 2354 (2019).
  34. 34. G. Smirnov and V. Stegailov, J. Phys.: Cond. Mat. 31, 235704 (2019).
  35. 35. D. E. Smirnova, A. Y. Kuksin, S. V. Starikov, V. V. Stegailov, Z. Insepov, J. Rest, and A. M. Yacout, Modell. Simul. Mater. Sci. Eng. 21, 035011 2013.
  36. 36. D. Yun, Y. Miao, R. Xu, Z. Mei, K. Mo, W. Mohamed, B. Ye, M. J. Pellin, and A. M. Yacout, J. Nucl. Materials 471, 272 2016.
  37. 37. B. Beeler, S. Hu, Y. Zhang, and Y. Gao, J. Nucl. Materials 530, 151961 (2020).
  38. 38. B. Beeler, M. W. Cooper, Z.-G. Mei, D. Schwen, and Y. Zhang, J. Nucl. Materials 543, 152568 (2021).
  39. 39. J. French and X.-M. Bai, J. Nucl. Materials 565, 153744 (2022).
  40. 40. I. Novoselov, A. Yanilkin, A. Shapeev, and E. Podryabinkin, Comp. Mat. Sci. 164, 46 (2019).
  41. 41. R. Ryltsev and N. Chtchelkatchev, J. Mol. Liq. 349, 118181 (2022).
  42. 42. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).
  43. 43. Г. Э. Норман, В. В. Стегайлов, Мат. Мод. 24, 3 (2012).
  44. 44. A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen et al., Computer Physics Communications 271, 108171 (2022).
  45. 45. A. Shamsutdinov, M. Khalilov, T. Ismagilov, A. Piryugin, S. Biryukov, V. Stegailov, and A. Timofeev, in International Conference on Mathematical Modeling and Supercomputer Technologies (Springer, 2020), p. 401.
  46. 46. W. J¨ager, R. Manzke, H. Trinkaus, G. Crecelius, R. Zeller, J. Fink, and H. Bay, J. Nucl. Materials 111, 674 (1982).
  47. 47. M. Methfessel, D. Hennig, and M. Sche er, Phys. Rev. B 46, 4816 (1992).
  48. 48. W. Tyson, Canadian Metal. Quart. 14, 307 (1975).
  49. 49. Z. Insepov, J. Rest, A. Yacout, A. Y. Kuksin, G. Norman, V. Stegailov, S. Starikov, and A. Yanilkin, J. Nucl. Materials 425, 41 (2012).
  50. 50. V. V. Dremov, P. V. Chirkov, and A. V. Karavaev, Sci. Rep. 11, 1 (2021).
  51. 51. D. Seitov, K. Nekrasov, A. Y. Kupryazhkin, S. Gupta, and A. Usseinov, Phys. Res. Sec. B 476, 26 (2020).
  52. 52. N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, Int. J. High Perf.Comp. Appl. 35, 312 (2021).
  53. 53. A. Leenaers, W. Van Renterghem, and S. Van den Berghe, J. Nucl. Materials 476, 218 (2016).
  54. 54. H. Xie, N. Gao, K. Xu, G.-H. Lu, T. Yu, and F. Yin, Acta Materialia 141, 10 (2017).
  55. 55. A. V. Nazarov, A. A. Mikheev, and A. P. Melnikov, J. Nucl. Materials 532, 152067 (2020).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library