RAS PhysicsЖурнал экспериментальной и теоретической физики Journal of Experimental and Theoretical Physics

  • ISSN (Print) 0044-4510
  • ISSN (Online) 3034-641X

Spectral Singularities of the Photoelectric Effect in a Zinc Phthalocyanine–Fullerene (ZnPc:C70) Donor–Acceptor Blend

PII
10.31857/S0044451023020025-1
DOI
10.31857/S0044451023020025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 163 / Issue number 2
Pages
153-161
Abstract
Spectral singularities of the ampere–watt sensitivity of photoelectric structures consisting of a transparent indium–tin oxide electrode, a photosensitive organic layer, and an aluminum electrode have been studied. The structures have been formed on a quartz glass substrate. The photosensitive layer has been vacuum-evaporated either from zinc phthalocyanine ZnPc (exhibiting donor properties) and C70 fullerene (acceptor) organic precursors or from a ZnPc:Cr70 donor–acceptor blend. Using computer simulation, the structure of absorption bands has been determined in a wide spectral range for all three above systems. This has made it possible to calculate the absorbed and reflected fractions of radiation incident on the sample and explain the singular spectral behavior of the ampere–watt sensitivity of the ZnPc:C70 blend. It has been shown that the photosensitivity of the blend reaches a maximum near the overlap of the absorption bands of donor and acceptor molecules
Keywords
Date of publication
15.02.2023
Year of publication
2023
Number of purchasers
0
Views
51

References

  1. 1. P. Peumans, S. Uchida, and S.R. Forrest, Nature 425, 158 (2003).
  2. 2. H.-W. Lin, S.-Y. Ku, H.-C. Su et al., Adv. Mater. 17, 2489 (2005).
  3. 3. A. J. Heeger, Adv. Mater. 26, 10 (2014).
  4. 4. В. А. Миличко, А. С. Шалин, И. С. Мухин и др., УФН 186, 801 (2016).
  5. 5. Y. Yuan, T. J. Reece, P. Sharma et al., Nature Mater. 11, 296 (2011).
  6. 6. Y. Yuan, P. Sharma, Zh. Xiao et al., Energy & Environ. Sci. 5, 8558 (2012).
  7. 7. В. А. Бендерский, Е. И. Кац, ЖЭТФ 154, 662 (2018).
  8. 8. V. A. Benderskii and E. I. Kats, High Energy Chem. 52, 400 (2018).
  9. 9. B. Kippelen and J.-L. Bredas, Energy Environ. Sci. 2, 251 (2009).
  10. 10. K. Cnops, B. P. Rand, D. Cheyns et al., Nat.Commun. 5, 3406 (2014).
  11. 11. K. J. Baeg, M. Binda, D. Natali et al., Adv. Mater. 25, 4267 (2013).
  12. 12. E. Manna, T. Xiao, J. Shinaret et al., Electronics 4, 688 (2015).
  13. 13. G. Yu, K. Pakbaz, and A. J. Heeger, Appl. Phys. Lett. 64, 3422 (1994).
  14. 14. K. S. Nalwa, J. A. Carr, R. C. Mahadevapuram et al., Energy & Environ. Sci. 5, 7042 (2012).
  15. 15. O. Hofmann, P. Miller, P. Sullivan et al., Sens. Actuators B. 106, 878 (2005).
  16. 16. B. Kraabel, C. H. Lee, D. McBranch et al., Chem. Phys. Lett. 213, 389 (1993).
  17. 17. K. Suemori, T. Miyata, T. Yokoyama et al., Appl. Phys. Lett. 86, 063509 (2005).
  18. 18. F. Roth, C. Lupulescu, T. Arion et al., J. Appl. Phys. 115, 033705 (2014).
  19. 19. Л. М. Блинов, В. В. Лазарев, С. Г. Юдин, Кристаллография 58, 908 (2013).
  20. 20. C.-F. Lin, M. Zhang, S.-W. Liu et al., Int. J. Mol. Sci. 12, 476 (2011).
  21. 21. G. Yu, J. Gao, J. C. Hummelen et al., Science. 270, 1789 (1995).
  22. 22. S. R. Cowan, N. Banerji, W. L. Leong et al., Adv. Funct. Mater. 22, 1116 (2012).
  23. 23. D. Beljonne, J. Cornil, L. Mussioli et al., Chem. Mater. 23, 591 (2011).
  24. 24. R.-J. Baeg, M. Binda, D. Natali et al., Adv. Mater. 25, 4267 (2013).
  25. 25. Э.А. Силиньш, М. В. Курик, В. Чапек, Электронные процессы в органических молекулярных кристаллах. Явления локации и поляризации. Зинатне, Рига (1988).
  26. 26. http://emlab.utep.edu/ee5390fdtd.htm
  27. 27. Хим. энцикл. в 5 т.; т. 5 Бол. Росс. Энцикл., Москва (1998), с. 195.
  28. 28. A. B. P. Lever, S. R. Pickens, P. C. Minor et al., J. Am. Chem. Soc. 103, 6800 (1981).
  29. 29. К. В. Зуев, Дисс. канд. техн. наук, РХТУ им. Д. И. Менделеева, Москва (2019).
  30. 30. С. П. Палто, А. В. Алпатова, А. Р. Гейвандов и др., Оптика и спектроскопия 124, 210 (2018).
  31. 31. В. В. Лазарев, Л. М. Блинов, С. Г. Юдин и др., ЖЭТФ 157, 156 (2020).
  32. 32. H. Fujiwara and M. Kondo, Phys. Rev. B. 71, 075109 (2005).
  33. 33. A. D. Raki'c, A. B. Djuriˇs'c, J. M. Elazar et al., Appl. Opt. 37, 5271 (1998).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library